% ---------------------------------------------------------------------- % In this script QR decomposition is applied to regressor in closed % form obtained from Lagrange formulation of dynamics. % ---------------------------------------------------------------------- % Get robot description run('main_ur.m') % Seed the random number generator based on the current time rng('shuffle'); includeMotorDynamics = 1; % ------------------------------------------------------------------------ % Getting limits on posistion and velocities % ------------------------------------------------------------------------ q_min = zeros(6,1); q_max = zeros(6,1); qd_max = zeros(6,1); q2d_max = 2*ones(6,1); % it is chosen by us as it is not given in URDF for i = 1:6 q_min(i) = str2double(ur10.robot.joint{i}.limit.Attributes.lower); q_max(i) = str2double(ur10.robot.joint{i}.limit.Attributes.upper); qd_max(i) = str2double(ur10.robot.joint{i}.limit.Attributes.velocity); end % ----------------------------------------------------------------------- % Standard dynamics paramters of the robot in symbolic form % ----------------------------------------------------------------------- m = sym('m%d',[6,1],'real'); hx = sym('h%d_x',[6,1],'real'); hy = sym('h%d_y',[6,1],'real'); hz = sym('h%d_z',[6,1],'real'); ixx = sym('i%d_xx',[6,1],'real'); ixy = sym('i%d_xy',[6,1],'real'); ixz = sym('i%d_xz',[6,1],'real'); iyy = sym('i%d_yy',[6,1],'real'); iyz = sym('i%d_yz',[6,1],'real'); izz = sym('i%d_zz',[6,1],'real'); im = sym('im%d',[6,1],'real'); % Load parameters attached to the end-effector syms ml hl_x hl_y hl_z il_xx il_xy il_xz il_yy il_yz il_zz real % Vector of symbolic parameters for i = 1:6 if includeMotorDynamics pi_lgr_sym(:,i) = [ixx(i),ixy(i),ixz(i),iyy(i),iyz(i),izz(i),... hx(i),hy(i),hz(i),m(i),im(i)]'; else pi_lgr_sym(:,i) = [ixx(i),ixy(i),ixz(i),iyy(i),iyz(i),izz(i),... hx(i),hy(i),hz(i),m(i)]'; end end [nLnkPrms, nLnks] = size(pi_lgr_sym); pi_lgr_sym = reshape(pi_lgr_sym, [nLnkPrms*nLnks, 1]); % ----------------------------------------------------------------------- % Find relation between independent columns and dependent columns % ----------------------------------------------------------------------- % Get observation matrix of identifiable paramters W = []; for i = 1:20 q_rnd = q_min + (q_max - q_min).*rand(6,1); qd_rnd = -qd_max + 2*qd_max.*rand(6,1); q2d_rnd = -q2d_max + 2*q2d_max.*rand(6,1); if includeMotorDynamics Y = regressorWithMotorDynamics(q_rnd,qd_rnd,q2d_rnd); else Y = full_regressor_UR10E(q_rnd,qd_rnd,q2d_rnd); end W = vertcat(W,Y); end % QR decomposition with pivoting: W*E = Q*R % R is upper triangular matrix % Q is unitary matrix % E is permutation matrix [Q,R,E] = qr(W); % matrix W has rank bb which is number number of base parameters bb = rank(W); % R = [R1 R2; % 0 0] % R1 is bbxbb upper triangular and reguar matrix % R2 is bbx(c-bb) matrix where c is number of standard parameters R1 = R(1:bb,1:bb); R2 = R(1:bb,bb+1:end); beta = R1\R2; % the zero rows of K correspond to independent columns of WP beta(abs(beta) 1e-6 fprintf('Found realationship between W1 and W2 is not correct\n'); return end % ----------------------------------------------------------------------- % Find base parmaters % ----------------------------------------------------------------------- pi1 = E(:,1:bb)'*pi_lgr_sym; % independent paramters pi2 = E(:,bb+1:end)'*pi_lgr_sym; % dependent paramteres % all of the expressions below are equivalent pi_lgr_base = pi1 + beta*pi2; pi_lgr_base2 = [eye(bb) beta]*[pi1;pi2]; pi_lgr_base3 = [eye(bb) beta]*E'*pi_lgr_sym; % Relationship needed for identifcation using physical feasibility %{ KG = [eye(bb) beta; zeros(size(W,2)-bb,bb) eye(size(W,2)-bb)]; G = KG*E'; invG = E*[eye(bb) -beta; zeros(size(W,2)-bb,bb) eye(size(W,2)-bb)]; we = G*pi_lgr_sym; vpa(we,3) wr = invG*we; %} % ----------------------------------------------------------------------- % Validation of obtained mappings % ----------------------------------------------------------------------- fprintf('Validation of mapping from standard parameters to base ones\n') if includeMotorDynamics ur10.pi(end+1,:) = rand(1,nLnks); ur10.pi = reshape(ur10.pi,[nLnkPrms*nLnks, 1]); else ur10.pi = reshape(ur10.pi,[nLnkPrms*nLnks, 1]); end % On random positions, velocities, aceeleations for i = 1:100 q_rnd = q_min + (q_max - q_min).*rand(6,1); qd_rnd = -qd_max + 2*qd_max.*rand(6,1); q2d_rnd = -q2d_max + 2*q2d_max.*rand(6,1); if includeMotorDynamics Yi = regressorWithMotorDynamics(q_rnd,qd_rnd,q2d_rnd); else Yi = full_regressor_UR10E(q_rnd,qd_rnd,q2d_rnd); end tau_full = Yi*ur10.pi; pi_lgr_base = [eye(bb) beta]*E'*ur10.pi; Y_base = Yi*E(:,1:bb); tau_base = Y_base*pi_lgr_base; nrm_err1(i) = norm(tau_full - tau_base); end figure plot(nrm_err1) ylabel('||\tau - \tau_b||') grid on if ~all(nrm_err1<1e-6) fprintf('Validation failed') return end % --------------------------------------------------------------------- % Create structure with the result of QR decompositon and save it % for further use. % --------------------------------------------------------------------- baseQR = struct; baseQR.numberOfBaseParameters = bb; baseQR.permutationMatrix = E; baseQR.beta = beta; baseQR.motorDynamicsIncluded = includeMotorDynamics; filename = 'baseQR.mat'; save(filename,'baseQR')