function [x_min,solved_nodes,lower,upper,lower_hist,upper_hist,timing,counter,problem] = branch_and_bound(p,x_min,upper,timing) % ************************************************************************* % Initialize diagnostic code % ************************************************************************* problem = 0; % ************************************************************************* % Create handles to solvers % ************************************************************************* lowersolver = p.solver.lowersolver.call; % For relaxed lower bound problem uppersolver = p.solver.uppersolver.call; % Local nonlinear upper bound lpsolver = p.solver.lpsolver.call; % LP solver for bound propagation % *************************************************************************f % GLOBAL PROBLEM DATA (these variables are the same in all nodes) % ************************************************************************* c = p.c; Q = p.Q; f = p.f; K = p.K; options = p.options; % ************************************************************************* % DEFINE UPPER BOUND PROBLEM. Basically just remove the cuts % ************************************************************************* p_upper = cleanuppermodel(p); p_upper = compile_nonlinear_table(p_upper); % ************************************************************************* % Active constraints in main model % 0 : Inactive constraint (i.e. a cut which unused) % 1 : Active constraint % inf : Removed constraint (found to be redundant) % ************************************************************************* p.InequalityConstraintState = ones(p.K.l,1); p.InequalityConstraintState(p.KCut.l,1) = 0; p.EqualityConstraintState = ones(p.K.f,1); % ************************************************************************* % LPs ARE USED IN BOX-REDUCTION % ************************************************************************* p.lpcuts = p.F_struc(1+p.K.f:1:p.K.l+p.K.f,:); p.cutState = ones(p.K.l,1); p.cutState(p.KCut.l,1) = 0; % Don't use to begin with % ************************************************************************* % INITIALITAZION % ************************************************************************* p.depth = 0; % depth in search tree p.dpos = 0; % used for debugging p.lower = NaN; lower = NaN; gap = inf; stack = []; solved_nodes = 0; numGlobalSolutions = 0; % ************************************************************************* % Silly hack to speed up solver calls % ************************************************************************* p.getsolvertime = 0; counter = p.counter; if options.bmibnb.verbose>0 disp('* Starting YALMIP global branch & bound.'); disp(['* Branch-variables : ' num2str(length(p.branch_variables))]); disp(['* Upper solver : ' p.solver.uppersolver.tag]); disp(['* Lower solver : ' p.solver.lowersolver.tag]); if p.options.bmibnb.lpreduce disp(['* LP solver : ' p.solver.lpsolver.tag]); end disp(' Node Upper Gap(%) Lower Open'); end t_start = cputime; go_on = 1; reduction_result = []; lower_hist = []; upper_hist = []; p.branchwidth = []; pseudo_costgain=[]; pseudo_variable=[]; while go_on % ********************************************************************* % ASSUME THAT WE WON'T FATHOME % ********************************************************************* keep_digging = 1; % ********************************************************************* % Strenghten variable bounds a couple of runs % ********************************************************************* p.changedbounds = 1; for i = 1:length(options.bmibnb.strengthscheme) if ~p.feasible break end switch options.bmibnb.strengthscheme(i) case 1 p = updatebounds_recursive_evaluation(p); case 2 p = updateboundsfromupper(p,upper,p.originalModel); case 3 p = propagatequadratics(p); case 4 p = propagate_bounds_from_complementary(p); case 5 tstart = tic; p = domain_reduction(p,upper,lower,lpsolver,x_min); timing.domainreduce = timing.domainreduce + toc(tstart); case 6 p = propagate_bounds_from_equalities(p); otherwise end end % ********************************************************************* % Detect redundant constraints % ********************************************************************* p = remove_redundant(p); % ********************************************************************* % SOLVE LOWER AND UPPER % ********************************************************************* if p.feasible [output,cost,p,timing] = solvelower(p,options,lowersolver,x_min,upper,timing); if output.problem == -1 % We have no idea what happened. % Behave as if it worked, so we can branch as see if things % clean up nicely cost = p.lower; if isnan(cost) cost = -inf; end output.problem = 3; end % Cplex sucks... if output.problem == 12 pp = p; pp.c = pp.c*0; [output2,cost2] = solvelower(pp,options,lowersolver,[],[],timing); if output2.problem == 0 output.problem = 2; else output.problem = 1; end end % GLPK sucks in st_e06 if abs(p.lb(p.linears)-p.ub(p.linears)) <= 1e-3 & output.problem==1 x = (p.lb+p.ub)/2; z = evaluate_nonlinear(p,x); oldCount = numGlobalSolutions; if numGlobalSolutions < p.options.bmibnb.numglobal [upper,x_min,cost,info_text,numGlobalSolutions] = heuristics_from_relaxed(p_upper,x,upper,x_min,cost,numGlobalSolutions); end end info_text = ''; switch output.problem case {1,12} % Infeasible info_text = 'Infeasible'; keep_digging = 0; cost = inf; feasible = 0; case 2 % Unbounded (should not happen!) cost = -inf; x = output.Primal; case {0,3,4} % No problems (disregard numerical problems) if (output.problem == 3) | (output.problem == 4) info_text = 'Numerical problems in lower bound solver'; end x = output.Primal; if ~isempty(p.branchwidth) if ~isempty(p.lower) pseudo_costgain = [pseudo_costgain (cost-p.lower)/p.branchwidth]; pseudo_variable = [pseudo_variable p.spliton]; end end % UPDATE THE LOWER BOUND if isnan(lower) lower = cost; end if ~isempty(stack) lower = min(cost,min([stack.lower])); else lower = min(lower,cost); end relgap = 100*(upper-lower)/(1+abs(upper)); relgap_too_big = (isinf(lower) | isnan(relgap) | relgap>options.bmibnb.relgaptol); if cost0 info_text = [info_text ' | ' info_text2]; else info_text = info_text; end if ~isequal(p.solver.uppersolver.tag,'none') if upper > p.options.bmibnb.target if options.bmibnb.lowertarget > lower [upper,x_min,info_text,numGlobalSolutions,timing] = solve_upper_in_node(p,p_upper,x,upper,x_min,uppersolver,info_text,numGlobalSolutions,timing); p.counter.uppersolved = p.counter.uppersolved + 1; end end end end else keep_digging = 0; info_text = 'Poor bound'; end otherwise cost = -inf; x = (p.lb+p.ub)/2; end else info_text = 'Infeasible'; keep_digging = 0; cost = inf; feasible = 0; end solved_nodes = solved_nodes+1; % ************************************************ % PRUNE SUBOPTIMAL REGIONS BASED ON UPPER BOUND % ************************************************ if ~isempty(stack) [stack,lower] = prune(stack,upper,options,solved_nodes,p); end if isempty(stack) if isinf(cost) && (cost > 0) lower = upper; else lower = cost; end else lower = min(lower,cost); end % ************************************************ % CONTINUE SPLITTING? % ************************************************ if ~isempty(p.branch_variables) && keep_digging && max(p.ub(p.branch_variables)-p.lb(p.branch_variables))>options.bmibnb.vartol && upper > lower node = []; spliton = branchvariable(p,options,x); if ismember(spliton,p.complementary) i = find(p.complementary(:,1) == spliton); if isempty(i) i = find(p.complementary(:,2) == spliton); end % Either v1 or v2 is zero v1 = p.complementary(i,1); v2 = p.complementary(i,2); gap_over_v1 = (p.lb(v1)<=0) & (p.ub(v1)>=0) & (p.ub(v1)-p.lb(v2))>0; gap_over_v2 = (p.lb(v2)<=0) & (p.ub(v2)>=0) & (p.ub(v2)-p.lb(v2))>0; if gap_over_v1 pp = p; pp.complementary( find((pp.complementary(:,1)==v1) | (pp.complementary(:,2)==v1)),:)=[]; node = savetonode(pp,v1,0,0,-1,x,cost,p.EqualityConstraintState,p.InequalityConstraintState,p.cutState); node.bilinears = p.bilinears; node = updateonenonlinearbound(node,spliton); if all(node.lb <= node.ub) node.branchwidth=[]; stack = push(stack,node); end end if gap_over_v2 pp = p; %pp.complementary(i,:)=[]; pp.complementary( find((pp.complementary(:,1)==v2) | (pp.complementary(:,2)==v2)),:)=[]; node = savetonode(pp,v2,0,0,-1,x,cost,p.EqualityConstraintState,p.InequalityConstraintState,p.cutState); node.bilinears = p.bilinears; node = updateonenonlinearbound(node,spliton); if all(node.lb <= node.ub) node.branchwidth=[]; stack = push(stack,node); end end end if isempty(node) bounds = partition(p,options,spliton,x); if length(bounds)>3 error('REPORT BOUND LENGTH UNIMPLEMENTED BUG') end for i = 1:length(bounds)-1 if ismember(spliton,union(p.binary_variables,p.integer_variables)) & (i==2) node = savetonode(p,spliton,bounds(i)+1,bounds(i+1),-1,x,cost,p.EqualityConstraintState,p.InequalityConstraintState,p.cutState); else node = savetonode(p,spliton,bounds(i),bounds(i+1),-1,x,cost,p.EqualityConstraintState,p.InequalityConstraintState,p.cutState); end node.bilinears = p.bilinears; node = updateonenonlinearbound(node,spliton); node.branchwidth = [p.ub(spliton)-p.lb(spliton)]; if all(node.lb <= node.ub) stack = push(stack,node); end end end if ~isempty(stack) lower = min([stack.lower]); end end if ~isempty(p) counter = p.counter; end % ************************************************ % Pick and create a suitable node % ************************************************ [p,stack] = selectbranch(p,options,stack,x_min,upper); if isempty(p) if ~isinf(upper) relgap = 0; end if isinf(upper) & isinf(lower) relgap = inf; end depth = 0; else relgap = 100*(upper-lower)/(1+max(abs(lower)+abs(upper))/2); depth = p.depth; end if options.bmibnb.verbose>0 fprintf(' %4.0f : %12.3E %7.2f %12.3E %2.0f %s \n',solved_nodes,upper,relgap,lower,length(stack)+length(p),info_text); end absgap = upper-lower; % ************************************************ % Continue? % ************************************************ time_ok = cputime-t_start < options.bmibnb.maxtime; iter_ok = solved_nodes < options.bmibnb.maxiter; any_nodes = ~isempty(p); relgap_too_big = (isinf(lower) | isnan(relgap) | relgap>100*options.bmibnb.relgaptol); absgap_too_big = (isinf(lower) | isnan(absgap) | absgap>options.bmibnb.absgaptol); uppertarget_not_met = upper > options.bmibnb.target; lowertarget_not_met = lower < options.bmibnb.lowertarget; go_on = uppertarget_not_met & lowertarget_not_met & time_ok & any_nodes & iter_ok & relgap_too_big & absgap_too_big; lower_hist = [lower_hist lower]; upper_hist = [upper_hist upper]; end if options.bmibnb.verbose>0 fprintf(['* Finished. Cost: ' num2str(upper) ' Gap: ' num2str(relgap) '\n']); if ~time_ok fprintf(['* Termination due to time limit \n']); elseif ~iter_ok fprintf(['* Termination due to iteration limit \n']); elseif ~any_nodes fprintf(['* Termination with all nodes pruned \n']); elseif ~relgap_too_big fprintf(['* Termination with relative gap satisfied \n']); elseif ~absgap_too_big fprintf(['* Termination with relative gap satisfied \n']); elseif uppertarget_not_met fprintf(['* Termination with upper bound limit reached \n']); elseif uppertarget_not_met fprintf(['* Termination with upper bound target reached \n']); elseif lowertarget_not_met fprintf(['* Termination with lower bound target reached \n']); end end if ~time_ok || ~iter_ok problem = 3; end % ************************************************************************* % Stack functionality % ************************************************************************* function stack = push(stackin,p) if ~isempty(stackin) stack = [p;stackin]; else stack(1)=p; end function [p,stack] = pull(stack,method,x_min,upper,branch_variables); if ~isempty(stack) switch method case 'maxvol' for i = 1:length(stack) vol(i) = sum(stack(i).ub(branch_variables)-stack(i).lb(branch_variables)); end [i,j] = max(vol); p=stack(j); stack = stack([1:1:j-1 j+1:1:end]); case 'best' [i,j]=min([stack.lower]); p=stack(j); stack = stack([1:1:j-1 j+1:1:end]); otherwise end else p =[]; end function [stack,lower] = prune(stack,upper,options,solved_nodes,p) if ~isempty(stack) toolarge = find([stack.lower]>upper*(1+1e-4)); if ~isempty(toolarge) stack(toolarge)=[]; end if ~isempty(stack) for j = 1:length(stack) if nnz(p.c.*(stack(j).ub-stack(j).lb)) == 1 & nnz(p.Q)==0 i = find(p.c.*(stack(j).ub-stack(j).lb)); if p.c(i)>0 stack(j).ub(i) = min([stack(j).ub(i) upper]); end end end indPOS = find(p.c>0); indNEG = find(p.c<0); LB = [stack.lb]; UB = [stack.ub]; LOWER = p.c([indPOS(:);indNEG(:)])'*[LB(indPOS,:);UB(indNEG,:)]; toolarge = find(LOWER > upper*(1-1e-8)); stack(toolarge)=[]; end end if ~isempty(stack) lower = min([stack.lower]); else lower = upper; end function node = savetonode(p,spliton,bounds1,bounds2,direction,x,cost,EqualityConstraintState,InequalityConstraintState,cutState); node.lb = p.lb; node.ub = p.ub; node.lb(spliton) = bounds1; node.ub(spliton) = bounds2; node.lb(p.integer_variables) = ceil(node.lb(p.integer_variables)); node.ub(p.integer_variables) = floor(node.ub(p.integer_variables)); node.lb(p.binary_variables) = ceil(node.lb(p.binary_variables)); node.ub(p.binary_variables) = floor(node.ub(p.binary_variables)); node.complementary = p.complementary; if direction == -1 node.dpos = p.dpos-1/(2^sqrt(p.depth)); else node.dpos = p.dpos+1/(2^sqrt(p.depth)); end node.spliton = spliton; node.depth = p.depth+1; node.x0 = x; node.lpcuts = p.lpcuts; node.lower = cost; node.InequalityConstraintState = InequalityConstraintState; node.EqualityConstraintState = EqualityConstraintState; node.cutState = cutState; % ************************************* % DERIVE LINEAR CUTS FROM SDPs % ************************************* function p = addsdpcut(p,x) if p.K.s > 0 top = p.K.f+p.K.l+1; newcuts = 1; newF = []; for i = 1:length(p.K.s) n = p.K.s(i); X = p.F_struc(top:top+n^2-1,:)*[1;x]; X = full(reshape(X,n,n)); [d,v] = eig(X); for m = 1:length(v) if v(m,m)<0 for j = 1:length(x)+1; newF(newcuts,j)= d(:,m)'*reshape(p.F_struc(top:top+n^2-1,j),n,n)*d(:,m); end % max(abs(newF(:,2:end)),[],2) newF(newcuts,1)=newF(newcuts,1)+1e-6; newcuts = newcuts + 1; if size(p.lpcuts,1)>0 dist = p.lpcuts*newF(newcuts-1,:)'/(newF(newcuts-1,:)*newF(newcuts-1,:)'); if any(abs(dist-1)<1e-3) newF = newF(1:end-1,:); newcuts = newcuts - 1; end end end end top = top+n^2; end if ~isempty(newF) % Don't keep all m = size(newF,2); % size(p.lpcuts) p.lpcuts = [newF;p.lpcuts]; p.cutState = [ones(size(newF,1),1);p.cutState]; violations = p.lpcuts*[1;x]; p.lpcuts = p.lpcuts(violations<0.1,:); if size(p.lpcuts,1)>15*m disp('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'); violations = p.lpcuts*[1;x]; [i,j] = sort(violations); %p.lpcuts = p.lpcuts(j(1:15*m),:); %p.cutState = lpcuts = p.lpcuts(j(1:15*m),:); %p.lpcuts = p.lpcuts(end-15*m+1:end,:); end end end function p = addlpcuts(p,z) if ~isempty(p.lpcuts) inactiveCuts = find(~p.cutState); violation = p.lpcuts(inactiveCuts,:)*[1;z]; need_to_add = find(violation < -1e-4); if ~isempty(need_to_add) p.cutState(inactiveCuts(need_to_add)) = 1; end inactiveCuts = find(p.InequalityConstraintState == 0 ); violation = p.F_struc(p.K.f+inactiveCuts,:)*[1;z]; need_to_add = find(violation < -1e-4); if ~isempty(need_to_add) p.InequalityConstraintState(inactiveCuts(need_to_add)) = 1; end end % ************************************************************************* % Strategy for deciding which variable to branch on % ************************************************************************* function spliton = branchvariable(p,options,x) % Split if box is to narrow width = abs(p.ub(p.branch_variables)-p.lb(p.branch_variables)); % if ~isempty(p.binary_variables) % width_bin = min([abs(1-x(p.binary_variables)) abs(x(p.binary_variables))],[],2); % end if isempty(p.bilinears) | ~isempty(p.evalMap) | any(p.variabletype > 2)%(min(width)/max(width) < 0.1) | (size(p.bilinears,1)==0) % [i,j] = max(width);%.*p.weight(p.branch_variables)); spliton = p.branch_variables(j); else res = x(p.bilinears(:,1))-x(p.bilinears(:,2)).*x(p.bilinears(:,3)); [ii,jj] = sort(abs(res)); v1 = p.bilinears(jj(end),2); v2 = p.bilinears(jj(end),3); acc_res1 = sum(abs(res(find((p.bilinears(:,2)==v1) | p.bilinears(:,3)==v1)))); acc_res2 = sum(abs(res(find((p.bilinears(:,2)==v2) | p.bilinears(:,3)==v2)))); if abs(acc_res1-acc_res2)<1e-3 & ismember(v2,p.branch_variables) & ismember(v1,p.branch_variables) if abs(p.ub(v1)-p.lb(v1))>abs(p.ub(v2)-p.lb(v2)) spliton = v1; elseif abs(p.ub(v1)-p.lb(v1))0.5 spliton = v1; else spliton = v2; end end else if (~ismember(v2,p.branch_variables) | (acc_res1>acc_res2)) & ismember(v1,p.branch_variables) spliton = v1; elseif ismember(v2,p.branch_variables) spliton = v2; else [i,j] = max(width); spliton = p.branch_variables(j); end end end % ************************************************************************* % Strategy for diving the search space % ************************************************************************* function bounds = partition(p,options,spliton,x_min) x = x_min; if isinf(p.lb(spliton)) %bounds = [p.lb(spliton) x_min(spliton) p.ub(spliton)] %return p.lb(spliton) = -1e6; end if isinf(p.ub(spliton)) %bounds = [p.lb(spliton) x_min(spliton) p.ub(spliton)] %return p.ub(spliton) = 1e6; end switch options.bmibnb.branchrule case 'omega' if ~isempty(x_min) U = p.ub(spliton); L = p.lb(spliton); x = x(spliton); bounds = [p.lb(spliton) 0.5*max(p.lb(spliton),min(x_min(spliton),p.ub(spliton)))+0.5*(p.lb(spliton)+p.ub(spliton))/2 p.ub(spliton)]; else bounds = [p.lb(spliton) (p.lb(spliton)+p.ub(spliton))/2 p.ub(spliton)]; end case 'bisect' bounds = [p.lb(spliton) (p.lb(spliton)+p.ub(spliton))/2 p.ub(spliton)]; otherwise bounds = [p.lb(spliton) (p.lb(spliton)+p.ub(spliton))/2 p.ub(spliton)]; end if isnan(bounds(2)) %FIX if isinf(p.lb(spliton)) p.lb(spliton) = -1e6; end if isinf(p.ub(spliton)) p.ub(spliton) = 1e6; end bounds(2) = (p.lb(spliton)+p.ub(spliton))/2; end function [p,stack] = selectbranch(p,options,stack,x_min,upper,cost_improvements) switch options.bmibnb.branchmethod case 'maxvol' [node,stack] = pull(stack,'maxvol',x_min,upper,p.branch_variables); case 'best' [node,stack] = pull(stack,'best',x_min,upper); case 'best-estimate' [node,stack] = pull(stack,'best-estimate',x_min,upper,[],cost_improvements); otherwise [node,stack] = pull(stack,'best',x_min,upper); end % Copy node data to p if isempty(node) p = []; else p.depth = node.depth; p.dpos = node.dpos; p.spliton = node.spliton; p.lb = node.lb; p.ub = node.ub; p.lower = node.lower; p.lpcuts = node.lpcuts; p.x0 = node.x0; p.InequalityConstraintState = node.InequalityConstraintState; p.EqualityConstraintState = node.EqualityConstraintState; p.complementary = node.complementary; p.cutState = node.cutState; p.feasible = 1; p.branchwidth = node.branchwidth; end % ************************************************************************* % Heuristics from relaxed % Basically nothing coded yet. Just check feasibility... % ************************************************************************* function [upper,x_min,cost,info_text,numglobals] = heuristics_from_relaxed(p_upper,x,upper,x_min,cost,numglobals) %load dummy;U = [x(1) x(2) x(4);0 x(3) x(5);0 0 x(6)];P=U'*U;i = find(triu(ones(length(A))-eye(length(A))));-log(det(U'*U))+trace(A*U'*U)+2*sum(invsathub(P(i),lambda)) x(p_upper.binary_variables) = round(x(p_upper.binary_variables)); x(p_upper.integer_variables) = round(x(p_upper.integer_variables)); z = apply_recursive_evaluation(p_upper,x(1:length(p_upper.c))); %z = evaluate_nonlinear(p_upper,x); relaxed_residual = constraint_residuals(p_upper,z); eq_ok = all(relaxed_residual(1:p_upper.K.f)>=-p_upper.options.bmibnb.eqtol); iq_ok = all(relaxed_residual(1+p_upper.K.f:end)>=p_upper.options.bmibnb.pdtol); relaxed_feasible = eq_ok & iq_ok; info_text = ''; if relaxed_feasible this_upper = p_upper.f+p_upper.c'*z+z'*p_upper.Q*z; if (this_upper < (1-1e-5)*upper) & (this_upper < upper - 1e-5) x_min = x; upper = this_upper; info_text = 'Improved solution'; cost = cost-1e-10; % Otherwise we'll fathome! numglobals = numglobals + 1; end end % ************************************************************************* % Detect redundant constraints % ************************************************************************* function p = remove_redundant(p); if isempty(p.F_struc) return end b = p.F_struc(1+p.K.f:p.K.l+p.K.f,1); A = -p.F_struc(1+p.K.f:p.K.l+p.K.f,2:end); redundant = find(((A>0).*A*(p.ub-p.lb) - (b-A*p.lb) <-1e-2)); if length(redundant)>1 p.InequalityConstraintState(redundant) = inf; end if p.options.bmibnb.lpreduce b = p.lpcuts(:,1); A = -p.lpcuts(:,2:end); redundant = find(((A>0).*A*(p.ub-p.lb) - (b-A*p.lb) <-1e-2)); if length(redundant)>1 p.lpcuts(redundant,:) = []; p.cutState(redundant) = []; end end if p.K.f > 0 b = p.F_struc(1:p.K.f,1); A = -p.F_struc(1:p.K.f,2:end); s1 = ((A>0).*A*(p.ub-p.lb) - (b-A*p.lb) <1e-6); s2 = ((-A>0).*(-A)*(p.ub-p.lb) - ((-b)-(-A)*p.lb) <1e-6); redundant = find(s1 & s2); if length(redundant)>1 p.EqualityConstraintState(redundant) = inf; end end % ************************************************************************* % Clean the upper bound model % Remove cut constraints, and % possibly unused variables not used % ************************************************************************* function p = cleanuppermodel(p); % We might have created a bilinear model from an original polynomial model. % We should use the original model when we solve the upper bound problem. p_bilinear = p; p = p.originalModel; % Remove cuts p.F_struc(p.K.f+p.KCut.l,:)=[]; p.K.l = p.K.l - length(p.KCut.l); n_start = length(p.c); % Quadratic mode, and quadratic aware solver? bilinear_variables = find(p.variabletype == 1 | p.variabletype == 2); if ~isempty(bilinear_variables) used_in_c = find(p.c); quadraticterms = used_in_c(find(ismember(used_in_c,bilinear_variables))); if ~isempty(quadraticterms) & p.solver.uppersolver.objective.quadratic.nonconvex usedinquadratic = zeros(1,length(p.c)); for i = 1:length(quadraticterms) Qij = p.c(quadraticterms(i)); power_index = find(p.monomtable(quadraticterms(i),:)); if length(power_index) == 1 p.Q(power_index,power_index) = Qij; else p.Q(power_index(1),power_index(2)) = Qij/2; p.Q(power_index(2),power_index(1)) = Qij/2; end p.c(quadraticterms(i)) = 0; end end end % Remove SDP cuts if length(p.KCut.s)>0 starts = p.K.f+p.K.l + [1 1+cumsum((p.K.s).^2)]; remove_these = []; for i = 1:length(p.KCut.s) j = p.KCut.s(i); remove_these = [remove_these;(starts(j):starts(j+1)-1)']; end p.F_struc(remove_these,:)=[]; p.K.s(p.KCut.s) = []; end p.lb = p_bilinear.lb(1:length(p.c)); p.ub = p_bilinear.ub(1:length(p.c)); p.bilinears = [];