%%***************************************************************************** %% sqlp: solve an semidefinite-quadratic-linear program %% by infeasible path-following method. %% %% [obj,X,y,Z,info,runhist] = sqlp(blk,At,C,b,OPTIONS,X0,y0,Z0); %% %% Input: blk: a cell array describing the block diagonal structure of SQL data. %% At: a cell array with At{p} = [svec(Ap1) ... svec(Apm)] %% b,C: data for the SQL instance. %% (X0,y0,Z0): an initial iterate (if it is not given, the default is used). %% OPTIONS: a structure that specifies parameters required in sqlp.m, %% (if it is not given, the default in sqlparameters.m is used). %% %% Output: obj = [ ]. %% (X,y,Z): an approximately optimal solution or a primal or dual %% infeasibility certificate. %% info.termcode = termination-code %% info.iter = number of iterations %% info.obj = [primal-obj, dual-obj] %% info.cputime = total-time %% info.gap = gap %% info.pinfeas = primal_infeas %% info.dinfeas = dual_infeas %% runhist.pobj = history of primal objective value. %% runhist.dobj = history of dual objective value. %% runhist.gap = history of . %% runhist.pinfeas = history of primal infeasibility. %% runhist.dinfeas = history of dual infeasibility. %% runhist.cputime = history of cputime spent. %%---------------------------------------------------------------------------- %% The OPTIONS structure specifies the required parameters: %% vers gam predcorr expon gaptol inftol steptol %% maxit printlevel scale_data ... %% (all have default values set in sqlparameters.m). %%************************************************************************* %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%************************************************************************* function [obj,X,y,Z,info,runhist] = sqlp(blk,At,C,b,OPTIONS,X0,y0,Z0); %% %%----------------------------------------- %% get parameters from the OPTIONS structure. %%----------------------------------------- %% global spdensity global solve_ok global schurfun schurfun_par warning off; matlabversion = sscanf(version,'%f'); matlabversion = matlabversion(1); ispc_hp_ibm = strncmp(computer,'PC',2) | strncmp(computer,'HP',2) | ... strncmp(computer,'IBM',3); vers = 0; predcorr = 1; gam = 0; expon = 1; gaptol = 1e-8; inftol = 1e-8; steptol = 1e-6; maxit = 100; printlevel = 3; stoplevel = 1; scale_data = 0; spdensity = 0.4; rmdepconstr = 0; cachesize = 256; smallblkdim = 15; parbarrier = cell(size(blk,1),1); for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'s') | strcmp(pblk{1},'q') parbarrier{p} = zeros(1,length(pblk{2})); elseif strcmp(pblk{1},'l') | strcmp(pblk{1},'u' ) parbarrier{p} = zeros(1,sum(pblk{2})); end end parbarrier_0 = parbarrier; schurfun = cell(size(blk,1),1); schurfun_par = cell(size(blk,1),1); if exist('OPTIONS') if isfield(OPTIONS,'vers'); vers = OPTIONS.vers; end if isfield(OPTIONS,'predcorr'); predcorr = OPTIONS.predcorr; end if isfield(OPTIONS,'gam'); gam = OPTIONS.gam; end if isfield(OPTIONS,'expon'); expon = OPTIONS.expon; end if isfield(OPTIONS,'gaptol'); gaptol = OPTIONS.gaptol; end if isfield(OPTIONS,'inftol'); inftol = OPTIONS.inftol; end if isfield(OPTIONS,'steptol'); steptol = OPTIONS.steptol; end if isfield(OPTIONS,'maxit'); maxit = OPTIONS.maxit; end if isfield(OPTIONS,'printlevel'); printlevel = OPTIONS.printlevel; end if isfield(OPTIONS,'stoplevel'); stoplevel = OPTIONS.stoplevel; end if isfield(OPTIONS,'scale_data'); scale_data = OPTIONS.scale_data; end if isfield(OPTIONS,'spdensity'); spdensity = OPTIONS.spdensity; end if isfield(OPTIONS,'rmdepconstr'); rmdepconstr = OPTIONS.rmdepconstr; end if isfield(OPTIONS,'cachesize'); cachesize = OPTIONS.cachesize; end if isfield(OPTIONS,'smallblkdim'); smallblkdim = OPTIONS.smallblkdim; end if isfield(OPTIONS,'parbarrier'); parbarrier = OPTIONS.parbarrier; if isempty(parbarrier); parbarrier = parbarrier_0; end end if isfield(OPTIONS,'schurfun'); schurfun = OPTIONS.schurfun; if ~isempty(schurfun); scale_data = 0; end end if isfield(OPTIONS,'schurfun_par'); schurfun_par = OPTIONS.schurfun_par; end if isempty(schurfun); schurfun = cell(size(blk,1),1); end if isempty(schurfun_par); schurfun_par = cell(size(blk,1),1); end end if (size(blk,2) > 2); smallblkdim = 0; end par.spdensity = spdensity; par.smallblkdim = smallblkdim; par.cachesize = cachesize; par.printlevel = printlevel; par.matlabversion = matlabversion; %% %%----------------------------------------- %% convert matrices to cell arrays. %%----------------------------------------- %% if ~iscell(At); At = {At}; end; if ~iscell(C); C = {C}; end; if all(size(At) == [size(blk,1), length(b)]); convertyes = zeros(size(blk,1),1); for p = 1:size(blk,1) if strcmp(blk{p,1},'s') & all(size(At{p,1}) == sum(blk{p,2})) convertyes(p) = 1; end end if any(convertyes) if (printlevel); fprintf('\n sqlp: converting At into required format'); end At = svec(blk,At,ones(size(blk,1),1)); end end if (nargin <= 5) | (isempty(X0) | isempty(y0) | isempty(Z0)); startpoint = 0; [X0,y0,Z0] = infeaspt(blk,At,C,b); else startpoint = 1; end X = X0; y = y0; Z = Z0; if ~iscell(X); X = {X}; end; if ~iscell(Z); Z = {Z}; end; %% %%----------------------------------------- %% validate SQLP data. %%----------------------------------------- %% tstart = cputime; [blk,At,C,b,dim,numblk,X,Z,parbarrier] = validate(blk,At,C,b,par,X,y,Z,parbarrier); if (printlevel>=2) fprintf('\n num. of constraints = %2.0d',length(b)); if dim(1); fprintf('\n dim. of sdp var = %2.0d,',dim(1)); fprintf(' num. of sdp blk = %2.0d',numblk(1)); end if dim(2); fprintf('\n dim. of socp var = %2.0d,',dim(2)); fprintf(' num. of socp blk = %2.0d',numblk(2)); end if dim(3); fprintf('\n dim. of linear var = %2.0d',dim(3)); end if dim(4); fprintf('\n dim. of free var = %2.0d',dim(4)); end end if (vers == 0); if dim(1); vers = 1; else; vers = 2; end end %% %%----------------------------------------- %% convert unrestricted blk to linear blk. %%----------------------------------------- %% state = rand('state'); rand('state',0); %% ublkidx = zeros(size(blk,1),1); for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'u') & (pblk{2} > 1) convert2lblk = 1; if (sum(pblk{2}) < min(length(b),20)) AAt = At{p}*At{p}'; [Lsymb,flag] = symbcholfun(AAt,cachesize); if (flag==0); L = sparcholfun(Lsymb,AAt); if ~any(L.skip) & (max(L.d)/min(L.d) < 1e6) convert2lblk = 0; end end end if (convert2lblk) ublkidx(p) = 1; n = 2*blk{p,2}; blk{p,1} = 'l'; blk{p,2} = n; parbarrier{p} = [parbarrier{p},parbarrier{p}]; At{p} = [At{p}; -At{p}]; C{p} = [C{p}; -C{p}]; b2 = 1 + abs(b'); normCtmp = 1+norm(C{p}); normAtmp = 1+sqrt(sum(At{p}.*At{p})); if (n > 1000) const = sqrt(n); else const = n; end X{p} = const* max([1,b2./normAtmp]) *ones(n,1); Z{p} = const* max([1,normAtmp/sqrt(n),normCtmp/sqrt(n)]) *ones(n,1); X{p} = X{p}.*(1+1e-10*rand(n,1)); Z{p} = Z{p}.*(1+1e-10*rand(n,1)); end end end rand('state',state); %% %%----------------------------------------- %% check whether {A1,...,Am} is %% linearly independent. %%----------------------------------------- %% m0 = length(b); [At,b,y,indeprows,par.depconstr,feasible,par.AAt] = checkdepconstr(blk,At,b,y,rmdepconstr); if (~feasible); obj = []; X = cell(size(blk,1),1); y = []; Z = cell(size(blk,1),1); info = []; runhist = []; fprintf('\n sqlp: SQLP is not feasible \n'); return; end par.normAAt = norm(par.AAt,'fro'); %% %%----------------------------------------- %% scale SQLP data. Note: must be done only %% after checkdepconstr %%----------------------------------------- %% normb2 = 1+norm(b); normC2 = 1+ops(C,'norm'); normA2 = 1+ops(At,'norm'); normX0 = 1+ops(X0,'norm'); normZ0 = 1+ops(Z0,'norm'); if (scale_data) [At,C,b,normA,normC,normb,X,y,Z] = scaling(blk,At,C,b,X,y,Z); if (startpoint == 0) [X,y,Z] = infeaspt(blk,At,C,b); normX0 = 1+ops(X,'norm'); normZ0 = 1+ops(Z,'norm'); end else normA = 1; normC = 1; normb = 1; end %% %%----------------------------------------- %% find the combined list of non-zero %% elements of Aj, j = 1:k, for each k. %%----------------------------------------- %% par.numcolAt = length(b); [At,C,X,Z,par.permA,par.permZ] = sortA(blk,At,C,b,X,Z); [par.isspA,par.nzlistA,par.nzlistAsum,par.isspAy,par.nzlistAy] = nzlist(blk,At,par); %% %%----------------------------------------- %% initialization %%----------------------------------------- %% [Xchol,indef(1)] = blkcholfun(blk,X); [Zchol,indef(2)] = blkcholfun(blk,Z); if any(indef) if (printlevel); fprintf('\n sqlp stop: X, Z are not both positive definite'); end termcode = -3; return; end nn = 0; for p = 1:size(blk,1); pblk = blk(p,:); idx = find(parbarrier{p}==0); if ~isempty(idx); if strcmp(pblk{1},'l') nn = nn + length(idx); elseif strcmp(pblk{1},'s') | strcmp(pblk{1},'q') nn = nn + sum(pblk{2}(idx)); end end end AX = AXfun(blk,At,par.permA,X); rp = b-AX; ZpATy = ops(Z,'+',Atyfun(blk,At,par.permA,par.isspAy,y)); ZpATynorm = ops(ZpATy,'norm'); Rd = ops(C,'-',ZpATy); objadd0 = 0; if (scale_data) for p = 1:size(blk,1) pblk = blk(p,:); objadd0 = objadd0 + sum(parbarrier{p}.*pblk{2})*log(normA{p}); end end objadd = blkbarrier(blk,X,Z,Xchol,Zchol,parbarrier) + objadd0; trXZ = blktrace(blk,X,Z,parbarrier); if (nn > 0); mu = trXZ/nn; else; mu = 1e-16; end obj = (normb*normC)*[blktrace(blk,C,X), b'*y] + objadd; gap = (normb*normC)*blktrace(blk,X,Z) - diff(objadd); rel_gap = gap/(1+sum(abs(obj))); prim_infeas = norm(rp)/normb2; dual_infeas = ops(Rd,'norm')/normC2; infeas_meas = max(prim_infeas,dual_infeas); if (scale_data) infeas_org(1) = prim_infeas*normb; infeas_org(2) = dual_infeas*normC; else infeas_org = [0,0]; end %% termcode = 0; pstep = 0; dstep = 0; pred_convg_rate = 1; corr_convg_rate = 1; prim_infeas_bad = 0; prim_infeas_min = prim_infeas; homRd = inf; homrp = inf; runhist.pobj = obj(1); runhist.dobj = obj(2); runhist.gap = gap; runhist.relgap = rel_gap; runhist.pinfeas = prim_infeas; runhist.dinfeas = dual_infeas; runhist.infeas = infeas_meas; runhist.step = 0; runhist.cputime = cputime-tstart; ttime.preproc = runhist.cputime; ttime.pred = 0; ttime.pred_pstep = 0; ttime.pred_dstep = 0; ttime.corr = 0; ttime.corr_pstep = 0; ttime.corr_dstep = 0; ttime.pchol = 0; ttime.dchol = 0; ttime.misc = 0; %% %%----------------------------------------- %% display parameters and initial info %%----------------------------------------- %% if (printlevel >= 2) fprintf('\n********************************************'); fprintf('***********************\n'); fprintf(' SDPT3: Infeasible path-following algorithms'); fprintf('\n********************************************'); fprintf('***********************\n'); [hh,mm,ss] = mytimed(ttime.preproc); if (printlevel>=3) fprintf(' version predcorr gam expon scale_data\n'); if (vers == 1); fprintf(' HKM '); elseif (vers == 2); fprintf(' NT '); end fprintf(' %1.0f %4.3f',predcorr,gam); fprintf(' %1.0f %1.0f %1.0f\n',expon,scale_data); fprintf('\nit pstep dstep p_infeas d_infeas gap') fprintf(' mean(obj) cputime\n'); fprintf('------------------------------------------------'); fprintf('-------------------\n'); fprintf('%2.0f %4.3f %4.3f %2.1e %2.1e',0,0,0,prim_infeas,dual_infeas); fprintf(' %2.1e %- 7.6e %d:%d:%d',gap,mean(obj),hh,mm,ss); end end %% %%--------------------------------------------------------------- %% start main loop %%--------------------------------------------------------------- %% param.termcode = termcode; param.normA = normA; param.normb = normb; param.normC = normC; param.normX0 = normX0; param.normZ0 = normZ0; param.m0 = m0; param.indeprows = indeprows; param.prim_infeas_bad = prim_infeas_bad; param.prim_infeas_min = prim_infeas_min; param.gaptol = gaptol; param.inftol = inftol; param.maxit = maxit; param.scale_data = scale_data; param.printlevel = printlevel; %% for iter = 1:maxit; tstart = cputime; timeold = cputime; update_iter = 0; breakyes = 0; pred_slow = 0; corr_slow = 0; step_short = 0; par.parbarrier = parbarrier; par.iter = iter; par.obj = obj; par.y = y; %% %%--------------------------------------------------------------- %% predictor step. %%--------------------------------------------------------------- %% if (predcorr) sigma = 0; else sigma = 1-0.9*min(pstep,dstep); if (iter == 1); sigma = 0.5; end; end sigmu = cell(size(blk,1),1); for p = 1:size(blk,1) sigmu{p} = max(sigma*mu, parbarrier{p}'); end invXchol = cell(size(blk,1),1); invZchol = ops(Zchol,'inv'); if (vers == 1); [par,dX,dy,dZ,coeff,L,hRd] = ... HKMpred(blk,At,par,rp,Rd,sigmu,X,Z,invZchol); elseif (vers == 2); [par,dX,dy,dZ,coeff,L,hRd] = ... NTpred(blk,At,par,rp,Rd,sigmu,X,Z,Zchol,invZchol); end if (solve_ok <= 0) fprintf('\n sqlp stop: difficulty in computing predictor directions'); runhist.cputime(iter+1) = cputime-tstart; termcode = -4; break; %% do not ues breakyes = 1 end timenew = cputime; ttime.pred = ttime.pred + timenew-timeold; timeold = timenew; %% %%----------------------------------------- %% step-lengths for predictor step %%----------------------------------------- %% if (gam == 0) gamused = 0.9 + 0.09*min(pstep,dstep); else gamused = gam; end [Xstep,invXchol] = steplength(blk,X,dX,Xchol,invXchol); pstep = min(1,gamused*Xstep); if (Xstep > .99e12) & (blktrace(blk,C,dX) < -1e-3) & (prim_infeas < 1e-3) pstep = Xstep; if (printlevel); fprintf('\n Predictor: dual seems infeasible.'); end end timenew = cputime; ttime.pred_pstep = ttime.pred_pstep + timenew-timeold; timeold = timenew; Zstep = steplength(blk,Z,dZ,Zchol,invZchol); dstep = min(1,gamused*Zstep); if (Zstep > .99e12) & (b'*dy > 1e-3) & (dual_infeas < 1e-3) dstep = Zstep; if (printlevel); fprintf('\n Predictor: primal seems infeasible.'); end end trXZpred = trXZ + pstep*blktrace(blk,dX,Z,parbarrier) ... + dstep*blktrace(blk,X,dZ,parbarrier) ... + pstep*dstep*blktrace(blk,dX,dZ,parbarrier); if (nn > 0); mupred = trXZpred/nn; else; mupred = 1e-17; end mupredhist(iter) = mupred; timenew = cputime; ttime.pred_dstep = ttime.pred_dstep + timenew-timeold; timeold = timenew; %% %%----------------------------------------- %% stopping criteria for predictor step. %%----------------------------------------- %% if (min(pstep,dstep) < steptol) & (stoplevel) & (iter > 10) if (printlevel) fprintf('\n sqlp stop: steps in predictor too short:'); fprintf(' pstep = %3.2e, dstep = %3.2e\n',pstep,dstep); end runhist.cputime(iter+1) = cputime-tstart; termcode = -2; breakyes = 1; end if (iter >= 2) idx = [max(2,iter-2) : iter]; pred_slow = all(mupredhist(idx)./mupredhist(idx-1) > 0.4); idx = [max(2,iter-5) : iter]; pred_convg_rate = mean(mupredhist(idx)./mupredhist(idx-1)); pred_slow = pred_slow + (mupred/mu > 5*pred_convg_rate); end if (~predcorr) if (max(mu,infeas_meas) < 1e-6) & (pred_slow) & (stoplevel) if (printlevel) fprintf('\n sqlp stop: lack of progress in predictor:'); fprintf(' mupred/mu = %3.2f, pred_convg_rate = %3.2f.',... mupred/mu,pred_convg_rate); end runhist.cputime(iter+1) = cputime-tstart; termcode = -2; breakyes = 1; else update_iter = 1; end end %% %%--------------------------------------------------------------- %% corrector step. %%--------------------------------------------------------------- %% if (predcorr) & (~breakyes) step_pred = min(pstep,dstep); if (mu > 1e-6) if (step_pred < 1/sqrt(3)); expon_used = 1; else expon_used = max(expon,3*step_pred^2); end else expon_used = max(1,min(expon,3*step_pred^2)); end sigma = min( 1, (mupred/mu)^expon_used ); sigmu = cell(size(blk,1),1); for p = 1:size(blk,1) sigmu{p} = max(sigma*mu, parbarrier{p}'); end %% if (vers == 1) [dX,dy,dZ] = HKMcorr(blk,At,par,rp,Rd,sigmu,hRd,... dX,dZ,coeff,L,X,Z); elseif (vers == 2) [dX,dy,dZ] = NTcorr(blk,At,par,rp,Rd,sigmu,hRd,... dX,dZ,coeff,L,X,Z); end if (solve_ok <= 0) fprintf('\n sqlp stop: difficulty in computing corrector directions'); runhist.cputime(iter+1) = cputime-tstart; termcode = -4; break; %% do not ues breakyes = 1 end timenew = cputime; ttime.corr = ttime.corr + timenew-timeold; timeold = timenew; %% %%----------------------------------- %% step-lengths for corrector step %%----------------------------------- %% if (gam == 0) gamused = 0.9 + 0.09*min(pstep,dstep); else gamused = gam; end Xstep = steplength(blk,X,dX,Xchol,invXchol); pstep = min(1,gamused*Xstep); if (Xstep > .99e12) & (blktrace(blk,C,dX) < -1e-3) & (prim_infeas < 1e-3) pstep = Xstep; if (printlevel); fprintf('\n Corrector: dual seems infeasible.'); end end timenew = cputime; ttime.corr_pstep = ttime.corr_pstep + timenew-timeold; timeold = timenew; Zstep = steplength(blk,Z,dZ,Zchol,invZchol); dstep = min(1,gamused*Zstep); if (Zstep > .99e12) & (b'*dy > 1e-3) & (dual_infeas < 1e-3) dstep = Zstep; if (printlevel); fprintf('\n Corrector: primal seems infeasible.'); end end trXZcorr = trXZ + pstep*blktrace(blk,dX,Z,parbarrier) ... + dstep*blktrace(blk,X,dZ,parbarrier)... + pstep*dstep*blktrace(blk,dX,dZ,parbarrier); if (nn > 0); mucorr = trXZcorr/nn; else; mucorr = 1e-17; end timenew = cputime; ttime.corr_dstep = ttime.corr_dstep + timenew-timeold; timeold = timenew; %% %%----------------------------------------- %% stopping criteria for corrector step %%----------------------------------------- %% if (iter >= 2) idx = [max(2,iter-2) : iter]; corr_slow = all(runhist.gap(idx)./runhist.gap(idx-1) > 0.8); idx = [max(2,iter-5) : iter]; corr_convg_rate = mean(runhist.gap(idx)./runhist.gap(idx-1)); corr_slow = corr_slow + (mucorr/mu > max(min(1,5*corr_convg_rate),0.8)); end if (max(mu,infeas_meas) < 1e-6) & (iter > 20) & (corr_slow) & (stoplevel) if (printlevel) fprintf('\n sqlp stop: lack of progress in corrector:'); fprintf(' mucorr/mu = %3.2f, corr_convg_rate = %3.2f',... mucorr/mu,corr_convg_rate); end runhist.cputime(iter+1) = cputime-tstart; termcode = -1; breakyes = 1; else update_iter = 1; end end %% %%--------------------------------------------------------------- %% udpate iterate %%--------------------------------------------------------------- %% indef = [1,1]; if (update_iter) for t = 1:5 [Xchol,indef(1)] = blkcholfun(blk,ops(X,'+',dX,pstep)); timenew = cputime; ttime.pchol = ttime.pchol + timenew-timeold; timeold = timenew; if (indef(1)); pstep = 0.8*pstep; else; break; end end if (t > 1); pstep = gamused*pstep; end for t = 1:5 [Zchol,indef(2)] = blkcholfun(blk,ops(Z,'+',dZ,dstep)); timenew = cputime; ttime.dchol = ttime.dchol + timenew-timeold; timeold = timenew; if (indef(2)); dstep = 0.8*dstep; else; break; end end if (t > 1); dstep = gamused*dstep; end AXtmp = AX + pstep*AXfun(blk,At,par.permA,dX); prim_infeasnew = norm(b-AXtmp)/normb2; if (rel_gap < 5*infeas_meas); alpha = 1e2; else; alpha = 1e3; end if any(indef) if (printlevel); fprintf('\n sqlp stop: X, Z not both positive definite'); end termcode = -3; breakyes = 1; elseif (prim_infeasnew > max([1e-8,rel_gap,20*prim_infeas])) ... | (prim_infeasnew > alpha*max([1e-9,param.prim_infeas_min]) ... & (iter > 25) & (dual_infeas < 1e-6) & (rel_gap < 0.1)) if (stoplevel) & (iter > 1) if (printlevel) fprintf('\n sqlp stop: primal infeas has deteriorated too much, %2.1e',prim_infeasnew); end termcode = -7; breakyes = 1; end else X = ops(X,'+',dX,pstep); y = y + dstep*dy; Z = ops(Z,'+',dZ,dstep); end end %%--------------------------------------------------------------- %% adjust linear blk arising from unrestricted blk %%--------------------------------------------------------------- %% for p = 1:size(blk,1) if (ublkidx(p) == 1) len = blk{p,2}/2; alpha = 0.8; xtmp = min(X{p}([1:len]),X{p}(len+[1:len])); X{p}([1:len]) = X{p}([1:len]) - alpha*xtmp; X{p}(len+[1:len]) = X{p}(len+[1:len]) - alpha*xtmp; if (mu < 1e-8) Z{p} = 0.5*mu./max(1,X{p}); else ztmp = min(1,max(Z{p}([1:len]),Z{p}(len+[1:len]))); beta1 = xtmp'*(Z{p}([1:len])+Z{p}(len+[1:len])); beta2 = (X{p}([1:len])+X{p}(len+[1:len])-2*xtmp)'*ztmp; beta = max(0.1,min(beta1/beta2,0.5)); Z{p}([1:len]) = Z{p}([1:len]) + beta*ztmp; Z{p}(len+[1:len]) = Z{p}(len+[1:len]) + beta*ztmp; end end end %% %%--------------------------------------------------------------- %% compute rp, Rd, infeasibities, etc. %%--------------------------------------------------------------- %% AX = AXfun(blk,At,par.permA,X); rp = b-AX; ZpATy = ops(Z,'+',Atyfun(blk,At,par.permA,par.isspAy,y)); ZpATynorm = ops(ZpATy,'norm'); Rd = ops(C,'-',ZpATy); trXZ = blktrace(blk,X,Z,parbarrier); if (nn > 0); mu = trXZ/nn; else; mu = 1e-16; end objadd = blkbarrier(blk,X,Z,Xchol,Zchol,parbarrier) + objadd0; obj = (normb*normC)*[blktrace(blk,C,X), b'*y] + objadd; gap = (normb*normC)*blktrace(blk,X,Z) - diff(objadd); rel_gap = gap/(1+sum(abs(obj))); prim_infeas = norm(rp)/normb2; dual_infeas = ops(Rd,'norm')/normC2; infeas_meas = max(prim_infeas,dual_infeas); if (scale_data) infeas_org(1) = prim_infeas*normb; infeas_org(2) = dual_infeas*normC; end homRd = inf; homrp = inf; if (ops(parbarrier,'norm') == 0) if (obj(2) > 0); homRd = ZpATynorm/(obj(2)); end if (obj(1) < 0); homrp = norm(AX)/(-obj(1))/(normC); end end runhist.pobj(iter+1) = obj(1); runhist.dobj(iter+1) = obj(2); runhist.gap(iter+1) = gap; runhist.relgap(iter+1) = rel_gap; runhist.pinfeas(iter+1) = prim_infeas; runhist.dinfeas(iter+1) = dual_infeas; runhist.infeas(iter+1) = infeas_meas; runhist.step(iter+1) = min(pstep,dstep); runhist.cputime(iter+1) = cputime-tstart; timenew = cputime; ttime.misc = ttime.misc + timenew-timeold; timeold = timenew; [hh,mm,ss] = mytimed(sum(runhist.cputime)); if (printlevel>=3) fprintf('\n%2.0f %4.3f %4.3f',iter,pstep,dstep); fprintf(' %2.1e %2.1e %2.1e',prim_infeas,dual_infeas,gap); fprintf(' %- 7.6e %d:%d:%d',mean(obj),hh,mm,ss); end %% %%-------------------------------------------------- %% check convergence. %%-------------------------------------------------- %% param.iter = iter; param.obj = obj; param.rel_gap = rel_gap; param.gap = gap; param.mu = mu; param.prim_infeas = prim_infeas; param.dual_infeas = dual_infeas; param.homRd = homRd; param.homrp = homrp; param.AX = AX; param.ZpATynorm = ZpATynorm; param.normX = ops(X,'norm'); param.normZ = ops(Z,'norm'); param.stoplevel = stoplevel; param.termcode = termcode; %% if (~breakyes) [param,breakyes,restart] = sqlpcheckconvg(param,runhist); end if (breakyes); break; end if (restart) [X,y,Z] = infeaspt(blk,At,C,b,2,1e5); rp = b-AXfun(blk,At,par.permA,X); ZpATy = ops(Z,'+',Atyfun(blk,At,par.permA,par.isspAy,y)); Rd = ops(C,'-',ZpATy); trXZ = blktrace(blk,X,Z,parbarrier); mu = trXZ/nn; gap = (normb*normC)*blktrace(blk,X,Z) - diff(objadd); prim_infeas = norm(rp)/normb2; dual_infeas = ops(Rd,'norm')/normC2; infeas_meas = max(prim_infeas,dual_infeas); [Xchol,indef(1)] = blkcholfun(blk,X); [Zchol,indef(2)] = blkcholfun(blk,Z); stoplevel = 3; end end %% %%--------------------------------------------------------------- %% end of main loop %%--------------------------------------------------------------- %% %%--------------------------------------------------------------- %% unscale and produce infeasibility certificates if appropriate %%--------------------------------------------------------------- %% if (iter >= 1) [X,y,Z,termcode,resid,reldist] = sqlpmisc(blk,At,C,b,X,y,Z,par.permZ,param); end %% %%--------------------------------------------------------------- %% recover unrestricted blk from linear blk %%--------------------------------------------------------------- %% for p = 1:size(blk,1) if (ublkidx(p) == 1) n = blk{p,2}/2; X{p} = X{p}(1:n)-X{p}(n+[1:n]); Z{p} = Z{p}(1:n); end end %% %%--------------------------------------------------------------- %% print summary %%--------------------------------------------------------------- %% maxC = 1+ops(ops(C,'abs'),'max'); maxb = 1+max(abs(b)); if (scale_data) dimacs = [infeas_org(1)*normb2/maxb; 0; infeas_org(2)*normC2/maxC; 0]; else dimacs = [prim_infeas*normb2/maxb; 0; dual_infeas*normC2/maxC; 0]; end dimacs = [dimacs; [-diff(obj); gap]/(1+sum(abs(obj)))]; info.dimacs = dimacs; info.termcode = termcode; info.iter = iter; info.obj = obj; info.gap = gap; info.relgap = rel_gap; info.pinfeas = prim_infeas; info.dinfeas = dual_infeas; info.cputime = sum(runhist.cputime); info.ttime = ttime; info.resid = resid; info.reldist = reldist; info.normX = ops(X,'norm'); info.normy = norm(y); info.normZ = ops(Z,'norm'); info.normb = normb2; info.normC = normC2; info.normA = normA2; %% sqlpsummary(info,ttime,infeas_org,printlevel); %%*****************************************************************************