%%*************************************************************************** %% lanczos: find the largest eigenvalue of %% invXchol'*dX*invXchol via the lanczos iteration. %% %% [lam,delta] = lanczos(Xchol,dX,maxit,tol,v) %% %% lam: an estimate of the largest eigenvalue. %% lam2: an estimate of the second largest eigenvalue. %% res: residual norm of the largest eigen-pair. %% res2: residual norm of the second largest eigen-pair. %%*************************************************************************** function [lam,delta,res] = lanczos(Xchol,dX,maxit,tol,v) if (norm(dX,'fro') < 1e-13) lam = 0; delta = 0; res = 0; return; end n = length(dX); if (nargin < 5); state = randn('state'); randn('state',0); v = randn(n,1); randn('state',state); end if (nargin < 4); maxit = 30; end if (nargin < 3); tol = 1e-3; end V = zeros(n,maxit+1); H = zeros(maxit+1,maxit); v = v/norm(v); V(:,1) = v; if issparse(Xchol); Xcholtransp = Xchol'; end %% %% lanczos iteration. %% for k = 1:maxit if issparse(Xchol) w = dX*mextriangsp(Xcholtransp,v,1); w = mextriangsp(Xchol,w,2); else w = dX*mextriang(Xchol,v,1); w = mextriang(Xchol,w,2); end wold = w; if (k > 1); w = w - H(k,k-1)*V(:,k-1); end; alp = w'*V(:,k); w = w - alp*V(:,k); H(k,k) = alp; %% %% one step of iterative refinement if necessary. %% if (norm(w) <= 0.8*norm(wold)); s = (w'*V(:,1:k))'; w = w - V(:,1:k)*s; H(1:k,k) = H(1:k,k) + s; end; nrm = norm(w); v = w/nrm; V(:,k+1) = v; H(k+1,k) = nrm; H(k,k+1) = nrm; %% %% compute ritz pairs and test for convergence %% if (rem(k,5) == 0) | (k == maxit); Hk = H(1:k,1:k); Hk = 0.5*(Hk+Hk'); [Y,D] = eig(Hk); eigH = real(diag(D)); [dummy,idx] = sort(eigH); res_est = abs(H(k+1,k)*Y(k,idx(k))); if (res_est <= 0.1*tol) | (k == maxit); lam = eigH(idx(k)); lam2 = eigH(idx(k-1)); z = V(:,1:k)*Y(:,idx(k)); z2 = V(:,1:k)*Y(:,idx(k-1)); if issparse(Xchol) tmp = dX*mextriangsp(Xcholtransp,z,1); res = norm(mextriangsp(Xchol,tmp,2) -lam*z); tmp = dX*mextriangsp(Xcholtransp,z2,1); res2 = norm(mextriangsp(Xchol,tmp,2) -lam*z2); else tmp = dX*mextriang(Xchol,z,1); res = norm(mextriang(Xchol,tmp,2) -lam*z); tmp = dX*mextriang(Xchol,z2,1); res2 = norm(mextriang(Xchol,tmp,2) -lam*z2); end tmp = lam-lam2 -res2; if (tmp > 0); beta = tmp; else; beta = eps; end; delta = min(res,res^2/beta); if (delta <= tol); break; end; end end end %%***************************************************************************