function [UncertainModel,Uncertainty,VariableType,ops,failure] = decomposeUncertain(F,h,w,ops) failure = 0; % Do we have any uncertainty declarations variables? [F,w] = extractUncertain(F,w); if isempty(w) error('There is no uncertainty in the model.'); end % Partition the model into % F_x : Constraints in decision variables only % F_w : The uncertainty description % F_xw : The uncertain constraints % Note that this analysis might also declare som of the auxiliary variables % as simple uncertain variables. It might also create a new objective % function in order to have all uncertainty in the constraints F_original = F; [VariableType,F_x,F_w,F_xw,h] = robust_classify_variables_newest(F,h,ops,w); if length(F_w)==0 error('There is no uncertainty description in the model.'); end if ops.verbose dispsilent(ops.verbose,'***** Starting YALMIP robustification module. *********************'); if length(w)