diff --git a/trajectory_optmzn/ptrnSrch_N5T20.mat b/trajectory_optmzn/ptrnSrch_N5T20.mat new file mode 100644 index 0000000..82df1f6 Binary files /dev/null and b/trajectory_optmzn/ptrnSrch_N5T20.mat differ diff --git a/ur_base_params_QRlgr.m b/ur_base_params_QRlgr.m index b5aa4ea..b8e0378 100644 --- a/ur_base_params_QRlgr.m +++ b/ur_base_params_QRlgr.m @@ -129,9 +129,10 @@ wr = invG*we; % ----------------------------------------------------------------------- fprintf('Validation of mapping from standard parameters to base ones\n') if includeMotorDynamics - ur10.pi = rand(nLnkPrms*nLnks, 1); + ur10.pi(end+1,:) = rand(1,nLnks); + ur10.pi = reshape(ur10.pi,[nLnkPrms*nLnks, 1]); else - ur10.pi = reshape(ur10.pi,[60,1]); + ur10.pi = reshape(ur10.pi,[nLnkPrms*nLnks, 1]); end % On random positions, velocities, aceeleations diff --git a/ur_base_params_QRlgr.m~ b/ur_base_params_QRlgr.m~ deleted file mode 100644 index cf8281f..0000000 --- a/ur_base_params_QRlgr.m~ +++ /dev/null @@ -1,175 +0,0 @@ -% ---------------------------------------------------------------------- -% In this script QR decomposition is applied to regressor in closed -% form obtained from Lagrange formulation of dynamics. -% ---------------------------------------------------------------------- -% Get robot description -run('main_ur.m') - -% Seed the random number generator based on the current time -rng('shuffle'); - -includeMotorDynamics = 1; - -% ------------------------------------------------------------------------ -% Getting limits on posistion and velocities -% ------------------------------------------------------------------------ -q_min = zeros(6,1); -q_max = zeros(6,1); -qd_max = zeros(6,1); -q2d_max = 2*ones(6,1); % it is chosen by us as it is not given in URDF -for i = 1:6 - q_min(i) = str2double(ur10.robot.joint{i}.limit.Attributes.lower); - q_max(i) = str2double(ur10.robot.joint{i}.limit.Attributes.upper); - qd_max(i) = str2double(ur10.robot.joint{i}.limit.Attributes.velocity); -end - - -% ----------------------------------------------------------------------- -% Standard dynamics paramters of the robot in symbolic form -% ----------------------------------------------------------------------- -m = sym('m%d',[6,1],'real'); -hx = sym('h%d_x',[6,1],'real'); -hy = sym('h%d_y',[6,1],'real'); -hz = sym('h%d_z',[6,1],'real'); -ixx = sym('i%d_xx',[6,1],'real'); -ixy = sym('i%d_xy',[6,1],'real'); -ixz = sym('i%d_xz',[6,1],'real'); -iyy = sym('i%d_yy',[6,1],'real'); -iyz = sym('i%d_yz',[6,1],'real'); -izz = sym('i%d_zz',[6,1],'real'); -im = sym('im%d',[6,1],'real'); - -% Load parameters attached to the end-effector -syms ml hl_x hl_y hl_z il_xx il_xy il_xz il_yy il_yz il_zz real - -% Vector of symbolic parameters -for i = 1:6 - if includeMotorDynamics - pi_lgr_sym(:,i) = [ixx(i),ixy(i),ixz(i),iyy(i),iyz(i),izz(i),... - hx(i),hy(i),hz(i),m(i),im(i)]'; - else - pi_lgr_sym(:,i) = [ixx(i),ixy(i),ixz(i),iyy(i),iyz(i),izz(i),... - hx(i),hy(i),hz(i),m(i)]'; - end -end -[nLnkPrms, nLnks] = size(pi_lgr_sym); -pi_lgr_sym = reshape(pi_lgr_sym, [nLnkPrms*nLnks, 1]); - - -% ----------------------------------------------------------------------- -% Find relation between independent columns and dependent columns -% ----------------------------------------------------------------------- -% Get observation matrix of identifiable paramters -W = []; -for i = 1:20 - q_rnd = q_min + (q_max - q_min).*rand(6,1); - qd_rnd = -qd_max + 2*qd_max.*rand(6,1); - q2d_rnd = -q2d_max + 2*q2d_max.*rand(6,1); - - if includeMotorDynamics - Y = regressorWithMotorDynamics(q_rnd,qd_rnd,q2d_rnd); - else - Y = full_regressor_UR10E(q_rnd,qd_rnd,q2d_rnd); - end - W = vertcat(W,Y); -end - -% QR decomposition with pivoting: W*E = Q*R -% R is upper triangular matrix -% Q is unitary matrix -% E is permutation matrix -[Q,R,E] = qr(W); - -% matrix W has rank bb which is number number of base parameters -bb = rank(W); - -% R = [R1 R2; -% 0 0] -% R1 is bbxbb upper triangular and reguar matrix -% R2 is bbx(c-bb) matrix where c is number of identifiable parameters -R1 = R(1:bb,1:bb); -R2 = R(1:bb,bb+1:end); -beta = R1\R2; % the zero rows of K correspond to independent columns of WP -beta(abs(beta) 1e-6 - fprintf('Found realationship between W1 and W2 is not correct\n'); - return -end - - -% ----------------------------------------------------------------------- -% Find base parmaters -% ----------------------------------------------------------------------- -pi1 = E(:,1:bb)'*pi_lgr_sym; % independent paramters -pi2 = E(:,bb+1:end)'*pi_lgr_sym; % dependent paramteres - -% all of the expressions below are equivalent -pi_lgr_base = pi1 + beta*pi2; -pi_lgr_base2 = [eye(bb) beta]*[pi1;pi2]; -pi_lgr_base3 = [eye(bb) beta]*E'*pi_lgr_sym; - -% Relationship needed for identifcation using physical feasibility -%{ -KG = [eye(bb) beta; zeros(size(W,2)-bb,bb) eye(size(W,2)-bb)]; -G = KG*E'; -invG = E*[eye(bb) -beta; zeros(size(W,2)-bb,bb) eye(size(W,2)-bb)]; -we = G*pi_lgr_sym; -vpa(we,3) -wr = invG*we; -%} - -return -% ----------------------------------------------------------------------- -% Validation of obtained mappings -% ----------------------------------------------------------------------- -fprintf('Validation of mapping from standard parameters to base ones\n') -ur10.pi = reshape(ur10.pi,[60,1]); - -% On random positions, velocities, aceeleations -for i = 1:100 - q_rnd = q_min + (q_max - q_min).*rand(6,1); - qd_rnd = -qd_max + 2*qd_max.*rand(6,1); - q2d_rnd = -q2d_max + 2*q2d_max.*rand(6,1); - - if includeMotorDynamics - Yi = regressorWithMotorDynamics(q_rnd,qd_rnd,q2d_rnd); - else - Yi = full_regressor_UR10E(q_rnd,qd_rnd,q2d_rnd); - end - Yi = full_regressor_UR10E(q_rnd, qd_rnd, q2d_rnd); - tau_full = Yi*ur10.pi; - - pi_lgr_base = [eye(bb) beta]*E'*ur10.pi; - Y_base = Yi*E(:,1:bb); - tau_base = Y_base*pi_lgr_base; - nrm_err1(i) = norm(tau_full - tau_base); -end -figure -plot(nrm_err1) -ylabel('||\tau - \tau_b||') -grid on - - - -% ----------------------------------------------------------------------- -% Additional functions -% ----------------------------------------------------------------------- -function Y = regressorWithMotorDynamics(q,qd,q2d) -% ---------------------------------------------------------------------- -% This function adds motor dynamics to rigid body regressor. -% It is simplified model of motor dynamics, it adds only reflected -% inertia i.e. I_rflctd = Im*N^2 where N is reduction ratio - I_rflctd*q_2d -% parameter is added to existing vector of each link [pi_i I_rflctd_i] -% so that each link has 11 parameters -% ---------------------------------------------------------------------- - Y_rgd_bdy = full_regressor_UR10E(q,qd,q2d); - Y_mtrs = diag(q2d); - Y = [Y_rgd_bdy(:,1:10), Y_mtrs(:,1), Y_rgd_bdy(:,11:20), Y_mtrs(:,2),... - Y_rgd_bdy(:,21:30), Y_mtrs(:,3), Y_rgd_bdy(:,31:40), Y_mtrs(:,4),... - Y_rgd_bdy(:,41:50), Y_mtrs(:,5), Y_rgd_bdy(:,51:60), Y_mtrs(:,6)]; -end \ No newline at end of file diff --git a/ur10_base_params_sym.m b/ur_base_params_sym.m similarity index 73% rename from ur10_base_params_sym.m rename to ur_base_params_sym.m index b3e1dbb..c0a22b7 100644 --- a/ur10_base_params_sym.m +++ b/ur_base_params_sym.m @@ -1,5 +1,3 @@ -% Get robot description -run('main_ur.m') % ----------------------------------------------------------------------- % % Getting base parameters of the UR10 manipulator based on the @@ -11,10 +9,13 @@ run('main_ur.m') % Here we tried to generilize what was given there to more general % parametrization compared to their modified DH parameters. % ------------------------------------------------------------------------ +% Get robot description +run('main_ur.m') + +generateBaseRegressorFunction = 0; +generateBaseDynamicsFunctions = 0; -% ----------------------------------------------------------------------- % Create symbolic parameters -% ----------------------------------------------------------------------- m = sym('m%d',[6,1],'real'); hx = sym('h%d_x',[6,1],'real'); hy = sym('h%d_y',[6,1],'real'); @@ -36,9 +37,7 @@ for i = 1:6 hx(i),hy(i),hz(i),m(i)]'; end -% ------------------------------------------------------------------------ % Symbolic generilized coordiates, their first and second deriatives -% ----------------------------------------------------------------------- q_sym = sym('q%d',[6,1],'real'); qd_sym = sym('qd%d',[6,1],'real'); q2d_sym = sym('q2d%d',[6,1],'real'); @@ -75,72 +74,14 @@ for i = 1:6 v_kk(:,i+1) = T_pk(1:3,1:3,i)'*(v_kk(:,i) + cross(w_kk(:,i),sym(p_pj))); g_kk(:,i+1) = T_pk(1:3,1:3,i)'*g_kk(:,i); p_kk(:,i+1) = T_pk(1:3,1:3,i)'*(p_kk(:,i) + sym(p_pj)); - - K_reg(i,:) = [sym(0.5)*w2wtlda(w_kk(:,i+1)),... - v_kk(:,i+1)'*vec2skewSymMat(w_kk(:,i+1)),... - sym(0.5)*v_kk(:,i+1)'*v_kk(:,i+1)]; - P_reg(i,:) = [sym(zeros(1,6)), g_kk(:,i+1)',... - g_kk(:,i+1)'*p_kk(:,i+1)]; - + lmda(:,:,i) = getLambda(T_pk(1:3,1:3,i),sym(p_pj)); f(:,i) = getF(v_kk(:,i+1),w_kk(:,i+1),sym(jnt_axs_k),qd_sym(i)); DK(:,i+1) = lmda(:,:,i)*DK(:,i) + qd_sym(i)*f(:,i); DP(:,i+1) = lmda(:,:,i)*DP(:,i); end -% --------------------------------------------------------- -% Kinetic and potential energy of the load -% --------------------------------------------------------- -% Transformation from link 6 frame to end-effector frame -rpy_ee = sym(str2num(ur10.robot.joint{7}.origin.Attributes.rpy)); -R_6ee = RPY(rpy_ee); -R_6ee(abs(R_6ee)