Dynamic-Calibration/utils/SDPT3-4.0/Solver/read_sedumi.m

229 lines
7.7 KiB
Mathematica
Raw Normal View History

2019-12-18 11:25:45 +00:00
%%*******************************************************************
%% Read in a problem in SeDuMi format.
%%
%% [blk,A,C,b,perm] = read_sedumi(fname,b,c,K)
%%
%% Input: fname.mat = name of the file containing SDP data in
%% SeDuMi format.
%%
%% Important note: Sedumi's notation for free variables "K.f"
%% is coded in SDPT3 as blk{p,1} = 'u', where
%% "u" is used for unrestricted variables.
%%*****************************************************************
%% SDPT3: version 4.0
%% Copyright (c) 1997 by
%% Kim-Chuan Toh, Michael J. Todd, Reha H. Tutuncu
%% Last Modified: 16 Sep 2004
%%*****************************************************************
function [blk,Avec,C,b,perm] = read_sedumi(fname,b,c,K,smallblkdim)
if (nargin < 5)
smallblkdim = 50;
end
A = 0;
At = 0;
if isstr(fname)
%%
%% load the matlab file containing At, c, b, and K
%%
K.f = []; K.l = []; K.q = [];
compressed = 0;
if exist([fname,'.mat.gz']);
compressed = 1;
%unix(['gunzip ', fname,'.mat.gz']); %%modified: 2017-May-08
gunzup([fname,'.mat.gz']);
elseif exist([fname,'.gz']);
compressed = 2;
%unix(['gunzip ', fname,'.gz']);
gunzip([fname,'.gz']);
elseif exist([fname,'.mat.Z']);
compressed = 3;
unix(['uncompress ', fname,'.mat.Z']);
elseif exist([fname,'.Z']);
compressed = 4;
unix(['uncompress ', fname,'.Z']);
end
if exist([fname,'.mat']) | exist(fname)
eval(['load ', fname]);
else
fprintf('*** Problem not found, please specify the correct path or problem. \n');
blk = []; Avec = []; C = []; b = [];
return;
end
if (compressed == 1)
%unix(['gzip ', fname,'.mat']);
gzip([fname,'.mat']); %%modified: 2017-May-08
delete([fname,'.mat']);
elseif (compressed == 2)
%unix(['gzip ', fname]);
gzip(fname);
delete(fname);
elseif (compressed == 3)
unix(['compress ', fname,'.mat']);
elseif (compressed == 4)
unix(['compress ', fname]);
end
elseif (nargin < 4)
error('read_sedumi: need 4 input ');
else
A = fname;
end
%%
if exist('c','var')
if (size(c,1) == 1), c = c'; end;
end
if exist('C','var')
c = C;
if (size(c,1) == 1), c = c'; end;
end
if (size(b,1) == 1), b = b'; end;
if (norm(A,'fro') > 0) & (size(A,2) == length(b)); At = A; end
%%
if (norm(At,'fro')==0), At = A'; end;
[nn,mm] = size(At); if (max(size(c)) == 1); c = c*ones(nn,1); end;
if ~isfield(K,'f'); K.f = 0; end
if ~isfield(K,'l'); K.l = 0; end
if ~isfield(K,'q'); K.q = 0; end
if ~isfield(K,'s'); K.s = 0; end
if (K.f == 0) | isempty(K.f); K.f = 0; end;
if (K.l == 0) | isempty(K.l); K.l = 0; end;
if (sum(K.q) == 0) | isempty(K.q); K.q = 0; end
if (sum(K.s) == 0) | isempty(K.s); K.s = 0; end
%%
%%
%%
m = length(b);
rowidx = 0; idxblk = 0;
if ~(K.f == 0)
len = K.f;
idxblk = idxblk + 1;
blk{idxblk,1} = 'u'; blk{idxblk,2} = K.f;
Atmp = At(rowidx+[1:len],:);
Avec{idxblk,1} = Atmp;
C{idxblk,1} = c(rowidx+[1:len]);
perm{idxblk} = [];
rowidx = rowidx + len;
end
if ~(K.l == 0)
len = K.l;
idxblk = idxblk + 1;
blk{idxblk,1} = 'l'; blk{idxblk,2} = K.l;
Atmp = At(rowidx+[1:len],:);
Avec{idxblk,1} = Atmp;
C{idxblk,1} = c(rowidx+[1:len]);
perm{idxblk} = [];
rowidx = rowidx + len;
end
if ~(K.q == 0)
len = sum(K.q);
idxblk = idxblk + 1;
blk{idxblk,1} = 'q';
if size(K.q,1) <= size(K.q,2);
blk{idxblk,2} = K.q;
else
blk{idxblk,2} = K.q';
end
Atmp = At(rowidx+[1:len],:);
Avec{idxblk,1} = Atmp;
C{idxblk,1} = c(rowidx+[1:len]);
perm{idxblk} = [];
rowidx = rowidx + len;
end
if ~(K.s == 0)
blksize = K.s;
if (size(blksize,2) == 1); blksize = blksize'; end
blknnz = [0, cumsum(blksize.*blksize)];
deblkidx = find(blksize > smallblkdim);
if ~isempty(deblkidx)
for p = 1:length(deblkidx)
idxblk = idxblk + 1;
n = blksize(deblkidx(p));
pblk{1,1} = 's'; pblk{1,2} = n;
blk(idxblk,:) = pblk;
Atmp = At(rowidx+blknnz(deblkidx(p))+[1:n*n],:);
%%
%% column-wise positions of upper triangular part
%%
tmp = triu(ones(n)); tmp = tmp(:);
idxtriu = find(tmp);
%%
%% row-wise positions of lower triangular part
%%
tmp = tril(reshape([1:n*n],n,n)); tmp = tmp(:);
idxtmp = find(tmp);
[dummy,idxsub] = sort(rem(tmp(idxtmp),n));
idxtril = [idxtmp(idxsub(n+1:end));idxtmp(idxsub(1:n))];
%%
tmp2 = sqrt(2)*triu(ones(n),1) + speye(n,n);
tmp2 = tmp2(:);
dd = tmp2(find(tmp2));
n2 = n*(n+1)/2;
Atmptriu = Atmp(idxtriu,:);
Atmptril = Atmp(idxtril,:);
if (norm(Atmptriu-Atmptril,'fro') > 1e-13)
fprintf('\n warning: constraint matrices not symmetric.');
fprintf('\n matrices are symmetrized.\n');
Atmptriu = 0.5*(Atmptriu+Atmptril);
end
Avec{idxblk,1} = spdiags(dd,0,n2,n2)*Atmptriu;
Ctmp = c(rowidx+blknnz(deblkidx(p))+[1:n*n]);
Ctmp = mexmat(pblk,Ctmp,1);
C{idxblk,1} = 0.5*(Ctmp+Ctmp');
perm{idxblk,1} = deblkidx(p);
end
end
spblkidx = find(blksize <= smallblkdim);
if ~isempty(spblkidx)
cnt = 0; cnt2 = 0;
spblksize = blksize(spblkidx);
nn = sum(spblksize.*spblksize);
nn2 = sum(spblksize.*(spblksize+1)/2);
pos = zeros(nn,1);
dd = zeros(nn2,1);
idxtriu = zeros(nn2,1);
idxtril = zeros(nn2,1);
for p = 1:length(spblkidx)
n = blksize(spblkidx(p));
n2 = n*(n+1)/2;
pos(cnt+[1:n*n]) = rowidx+blknnz(spblkidx(p))+[1:n*n];
%%
%% column-wise positions of upper triangular part
%%
tmp = triu(ones(n)); tmp = tmp(:);
idxtriu(cnt2+[1:n2]) = cnt+find(tmp);
%%
%% row-wise positions of lower triangular part
%%
tmp = tril(reshape([1:n*n],n,n)); tmp = tmp(:);
idxtmp = find(tmp);
[dummy,idxsub] = sort(rem(tmp(idxtmp),n));
idxtril(cnt2+[1:n2]) = cnt+[idxtmp(idxsub(n+1:end));idxtmp(idxsub(1:n))];
%%
tmp2 = sqrt(2)*triu(ones(n),1) + speye(n,n);
tmp2 = tmp2(:);
dd(cnt2+[1:n2]) = tmp2(find(tmp2));
cnt = cnt + n*n;
cnt2 = cnt2 + n2;
end
idxblk = idxblk + 1;
blk{idxblk,1} = 's'; blk{idxblk,2} = blksize(spblkidx);
Atmp = At(pos,:);
Atmptriu = Atmp(idxtriu,:);
Atmptril = Atmp(idxtril,:);
if (norm(Atmptriu-Atmptril,'fro') > 1e-13)
fprintf('\n warning: constraint matrices not symmetric.');
fprintf('\n matrices are symmetrized.\n');
Atmptriu = 0.5*(Atmptriu+Atmptril);
end
Avec{idxblk,1} = spdiags(dd,0,length(dd),length(dd))*Atmptriu;
Ctmp = c(pos);
Ctmp = mexmat(blk(idxblk,:),Ctmp,1);
C{idxblk,1} = 0.5*(Ctmp+Ctmp');
perm{idxblk,1} = spblkidx;
end
end
%%
%%*******************************************************************