100 lines
3.5 KiB
Mathematica
100 lines
3.5 KiB
Mathematica
|
|
%%*****************************************************************
|
||
|
|
%% HKMrhsfun: compute the right-hand side vector of the
|
||
|
|
%% Schur complement equation for the HKM direction.
|
||
|
|
%%*****************************************************************
|
||
|
|
%% SDPT3: version 4.0
|
||
|
|
%% Copyright (c) 1997 by
|
||
|
|
%% Kim-Chuan Toh, Michael J. Todd, Reha H. Tutuncu
|
||
|
|
%% Last Modified: 16 Sep 2004
|
||
|
|
%%*****************************************************************
|
||
|
|
|
||
|
|
function [rhs,EinvRc,hRd] = HKMrhsfun(blk,At,par,X,Z,rp,Rd,sigmu,hRd,dX,dZ)
|
||
|
|
|
||
|
|
m = length(rp);
|
||
|
|
if (nargin > 8)
|
||
|
|
corrector = 1;
|
||
|
|
else
|
||
|
|
corrector = 0;
|
||
|
|
hRd = zeros(m,1);
|
||
|
|
end
|
||
|
|
hEinvRc = zeros(m,1);
|
||
|
|
EinvRc = cell(size(blk,1),1);
|
||
|
|
rhsfree = [];
|
||
|
|
%%
|
||
|
|
for p = 1:size(blk,1)
|
||
|
|
pblk = blk(p,:);
|
||
|
|
n = sum(pblk{2});
|
||
|
|
if strcmp(pblk{1},'l')
|
||
|
|
if iscell(sigmu)
|
||
|
|
EinvRc{p} = sigmu{p}./Z{p} -X{p};
|
||
|
|
else
|
||
|
|
EinvRc{p} = sigmu./Z{p} -X{p};
|
||
|
|
end
|
||
|
|
Rq = sparse(n,1);
|
||
|
|
if (corrector) & (norm(par.parbarrier{p})==0)
|
||
|
|
Rq = dX{p}.*dZ{p}./Z{p};
|
||
|
|
else
|
||
|
|
tmp = par.dd{p}.*Rd{p};
|
||
|
|
tmp2 = mexMatvec(At{p},tmp,1);
|
||
|
|
hRd = hRd + tmp2;
|
||
|
|
end
|
||
|
|
EinvRc{p} = EinvRc{p} - Rq;
|
||
|
|
tmp2 = mexMatvec(At{p,1},EinvRc{p},1);
|
||
|
|
hEinvRc = hEinvRc + tmp2;
|
||
|
|
elseif strcmp(pblk{1},'q')
|
||
|
|
if iscell(sigmu)
|
||
|
|
EinvRc{p} = qops(pblk,sigmu{p},par.Zinv{p},3) -X{p};
|
||
|
|
else
|
||
|
|
EinvRc{p} = sigmu*par.Zinv{p} -X{p};
|
||
|
|
end
|
||
|
|
Rq = sparse(n,1);
|
||
|
|
if (corrector) & (norm(par.parbarrier{p})==0)
|
||
|
|
ff{p} = qops(pblk,1./par.gamz{p},Z{p},3);
|
||
|
|
hdx = qops(pblk,par.gamz{p},ff{p},5,dX{p});
|
||
|
|
hdz = qops(pblk,par.gamz{p},ff{p},6,dZ{p});
|
||
|
|
hdxdz = Arrow(pblk,hdx,hdz);
|
||
|
|
Rq = qops(pblk,par.gamz{p},ff{p},6,hdxdz);
|
||
|
|
else
|
||
|
|
tmp = par.dd{p}.*Rd{p} ...
|
||
|
|
+ qops(pblk,qops(pblk,Rd{p},par.Zinv{p},1),X{p},3) ...
|
||
|
|
+ qops(pblk,qops(pblk,Rd{p},X{p},1),par.Zinv{p},3);
|
||
|
|
tmp2 = mexMatvec(At{p,1},tmp,1);
|
||
|
|
hRd = hRd + tmp2;
|
||
|
|
end
|
||
|
|
EinvRc{p} = EinvRc{p} - Rq;
|
||
|
|
tmp2 = mexMatvec(At{p,1},EinvRc{p},1);
|
||
|
|
hEinvRc = hEinvRc + tmp2;
|
||
|
|
elseif strcmp(pblk{1},'s')
|
||
|
|
if iscell(sigmu)
|
||
|
|
%%ss = [0,cumsum(pblk{2})];
|
||
|
|
%%sigmuvec = zeros(n,1);
|
||
|
|
%%for k = 1:length(pblk{2});
|
||
|
|
%% sigmuvec(ss(k)+1:ss(k+1)) = sigmu{p}(k)*ones(pblk{2}(k),1);
|
||
|
|
%%end
|
||
|
|
sigmuvec = mexexpand(pblk{2},sigmu{p});
|
||
|
|
EinvRc{p} = par.Zinv{p}*spdiags(sigmuvec,0,n,n) -X{p};
|
||
|
|
else
|
||
|
|
EinvRc{p} = sigmu*par.Zinv{p} -X{p};
|
||
|
|
end
|
||
|
|
Rq = sparse(n,n);
|
||
|
|
if (corrector) & (norm(par.parbarrier{p})==0)
|
||
|
|
Rq = Prod3(pblk,dX{p},dZ{p},par.Zinv{p},0);
|
||
|
|
Rq = 0.5*(Rq+Rq');
|
||
|
|
else
|
||
|
|
tmp = Prod3(pblk,X{p},Rd{p},par.Zinv{p},0,par.nzlistAy{p});
|
||
|
|
tmp = 0.5*(tmp+tmp');
|
||
|
|
tmp2 = AXfun(pblk,At(p,:),par.permA(p,:),{tmp});
|
||
|
|
hRd = hRd + tmp2;
|
||
|
|
end
|
||
|
|
EinvRc{p} = EinvRc{p} - Rq;
|
||
|
|
tmp2 = AXfun(pblk,At(p,:),par.permA(p,:),EinvRc(p));
|
||
|
|
hEinvRc = hEinvRc + tmp2;
|
||
|
|
elseif strcmp(pblk{1},'u')
|
||
|
|
rhsfree = [rhsfree; Rd{p}];
|
||
|
|
end
|
||
|
|
end
|
||
|
|
%%
|
||
|
|
rhs = rp + hRd - hEinvRc;
|
||
|
|
rhs = full([rhs; rhsfree]);
|
||
|
|
%%*******************************************************************
|