77 lines
2.3 KiB
Mathematica
77 lines
2.3 KiB
Mathematica
|
|
function [P,x] = polyhedron(X,options)
|
||
|
|
% polyhedron Converts constraint to MPT polyhedron object
|
||
|
|
%
|
||
|
|
% P = polyhedron(F)
|
||
|
|
% [P,x] = polyhedron(F)
|
||
|
|
%
|
||
|
|
% P : polyhedron object (Requires the Multi-parametric Toolbox)
|
||
|
|
% x : sdpvar object defining the variables in the polyhedron
|
||
|
|
% F : Constraint object with linear inequalities
|
||
|
|
|
||
|
|
if nargin < 2
|
||
|
|
options = sdpsettings;
|
||
|
|
elseif isempty(options)
|
||
|
|
options = sdpsettings;
|
||
|
|
end
|
||
|
|
|
||
|
|
[p,recoverdata,solver,diagnostic,F] = compileinterfacedata(X,[],[],[],options,0);
|
||
|
|
|
||
|
|
if p.K.q(1) > 0 | p.K.s(1) > 0 | any(p.variabletype)
|
||
|
|
error('Polyhedron can only be applied to MILP-representable constraints.')
|
||
|
|
end
|
||
|
|
|
||
|
|
if isempty(p.binary_variables) & isempty(p.integer_variables)
|
||
|
|
Aeq = -p.F_struc(1:p.K.f,2:end);
|
||
|
|
beq = p.F_struc(1:p.K.f,1);
|
||
|
|
A = -p.F_struc(p.K.f+1:end,2:end);
|
||
|
|
b = p.F_struc(p.K.f+1:end,1);
|
||
|
|
P = Polyhedron('A',A,'b',b,'Ae',Aeq,'be',beq);
|
||
|
|
x = recover(p.used_variables);
|
||
|
|
else
|
||
|
|
|
||
|
|
nBin = length(p.binary_variables);
|
||
|
|
[pBinary,removeEQ,removeLP] = extractOnly(p,p.binary_variables);
|
||
|
|
p.F_struc = [p.F_struc(removeEQ,:);p.F_struc(p.K.f+removeLP,:)];
|
||
|
|
p.K.f = length(removeEQ);
|
||
|
|
p.K.l = length(removeLP);
|
||
|
|
p.used_variables(p.binary_variables)=[];
|
||
|
|
x = recover(p.used_variables);
|
||
|
|
|
||
|
|
P = [];
|
||
|
|
for i = 0:2^nBin-1;
|
||
|
|
comb = dec2decbin(i,nBin);
|
||
|
|
if checkfeasiblefast(pBinary,comb(:),1e-6)
|
||
|
|
pi = p;
|
||
|
|
H = -p.F_struc(:,2:end);
|
||
|
|
K = p.F_struc(:,1);
|
||
|
|
K = K-H(:,p.binary_variables)*comb(:);
|
||
|
|
H(:,p.binary_variables)=[];
|
||
|
|
Aeq = H(1:p.K.f,:);
|
||
|
|
beq = H(1:p.K.f);
|
||
|
|
A = H(p.K.f+1:end,:);
|
||
|
|
b = K(p.K.f+1:end);
|
||
|
|
Pi = Polyhedron('A',A,'b',b,'Ae',Aeq,'be',beq);
|
||
|
|
P = [P Pi];
|
||
|
|
end
|
||
|
|
end
|
||
|
|
end
|
||
|
|
|
||
|
|
function pLP = extractLP(p);
|
||
|
|
pLP = p;
|
||
|
|
pLP.F_struc = pLP.F_struc(1:p.K.f+p.K.l,:);
|
||
|
|
pLP.K.q = 0;
|
||
|
|
pLP.K.s = 0;
|
||
|
|
|
||
|
|
function [pRed,removeEQ,removeLP] = extractOnly(p,these);
|
||
|
|
pRed = p;
|
||
|
|
p.F_struc(:,1+these) = 0;
|
||
|
|
|
||
|
|
removeEQ = find(any(p.F_struc(1:pRed.K.f,2:end),2));
|
||
|
|
removeLP = find(any(p.F_struc(1+pRed.K.f:end,2:end),2));
|
||
|
|
pRed.F_struc(pRed.K.f+removeLP,:)=[];
|
||
|
|
pRed.F_struc(removeEQ,:)=[];
|
||
|
|
pRed.K.f = pRed.K.f - length(removeEQ);
|
||
|
|
pRed.K.l = pRed.K.l - length(removeLP);
|
||
|
|
pRed.F_struc = pRed.F_struc(:,[1 1+these]);
|
||
|
|
pRed.lb = pRed.lb(these);
|
||
|
|
pRed.ub = pRed.ub(these);
|