Dynamic-Calibration/utils/YALMIP-master/@sdpvar/degree.m

109 lines
2.4 KiB
Mathematica
Raw Normal View History

2019-12-18 11:25:45 +00:00
function deg=degree(p,y,flag,vector)
%DEGREE Polynomial degree
%
% DEG = DEGREE(p,x,flag,vector)
%
% p : SDPVAR object.
% x : Degree w.r.t linear SDPVAR objects.
% flag : 'max', 'min'. Default 'max'
% vector : If vector = 1, returns degree of each element in p
%
% Examples
% x1 = sdpvar(1,1);x2 = sdpvar(1,1);
% p = [x1;x1*x2+x2^2];
%
% degree(p) returns 2
%
% degree(p,x1) returns 1
%
% degree(p,[x1 x2]) returns [1 2]
%
% degree(p,[x1 x2],[],1) returns [1 0;1 2]
%
% degree(p,[],1) returns [1;2]
if nargin == 3
if isa(flag,'double')
% Old syntax
deg = degree(p,y,'max',flag);
return;
end
end
if isnumeric(p)
if nargin==1
deg = 0;
else
deg = zeros(1,length(y));
end
return
end
if nargin<2 || isempty(y)
y = recover(depends(p));
end
if nargin < 3
flag = 'max';
end
if nargin < 4
vector = 0;
end
if vector == 0
exponent_p = exponents(p,y);
switch nargin
case 1
degrees = sum(exponent_p,2);
deg = full(max(degrees));
case {2,3}
switch flag
case 'max'
deg = full(max(exponent_p,[],1));
case 'min'
deg = full(min(exponent_p,[],1));
otherwise
end
otherwise
error('Too many arguments. Wadda ya mean?')
end
else
p = p(:);
if isempty(y)
yy = recover(depends(p));
else
yy = y;
end
deg = zeros(length(p),length(depends(yy)));
for i = 1:length(p)
z.type = '()';
z.subs{1} = i;
pi = subsref(p,z);
if isnumeric(pi)
deg(i,:) = 0;
else
exponent_p = exponents(pi,yy);
switch nargin
case 1
deg(i,:) = full(max(sum(exponent_p,2)));
case {2,3,4}
switch flag
case 'max'
deg(i,:) = full(max(exponent_p,[],1));
case 'min'
deg(i,:) = full(min(exponent_p,[],1));
otherwise
error('Do not understand the flag')
end
otherwise
error('Too many arguments. Wadda ya mean?')
end
end
end
if isempty(y)
deg = sum(deg,2);
end
end