154 lines
6.2 KiB
Mathematica
154 lines
6.2 KiB
Mathematica
|
|
function [Fconv,no_changed,infeasible,Forigquad] = convertquadratics(F)
|
||
|
|
%CONVERTQUADRATICS Internal function to extract quadratic constraints
|
||
|
|
|
||
|
|
% ******************************
|
||
|
|
% LINEAR?
|
||
|
|
% ******************************
|
||
|
|
|
||
|
|
infeasible = 0;
|
||
|
|
Fconv = F;
|
||
|
|
no_changed = 0;
|
||
|
|
Forigquad = [];
|
||
|
|
|
||
|
|
if islinear(F)
|
||
|
|
return
|
||
|
|
end
|
||
|
|
|
||
|
|
[monomtable,variabletype] = yalmip('monomtable');
|
||
|
|
|
||
|
|
if any(variabletype == 4)
|
||
|
|
if issigmonial(F)
|
||
|
|
return
|
||
|
|
end
|
||
|
|
end
|
||
|
|
|
||
|
|
Fconv = lmi;
|
||
|
|
no_changed = 0;
|
||
|
|
i_changed = [];
|
||
|
|
% Make sure bounds a pre-processed, in case we look for rotated cone which
|
||
|
|
% requires us to know lower bounds
|
||
|
|
nv = yalmip('nvars');
|
||
|
|
LU = yalmip('getbounds',1:nv);
|
||
|
|
LUhere = getbounds(F,[],LU);
|
||
|
|
for i = 1:1:length(F)
|
||
|
|
if max(variabletype(getvariables(F(i)))) <= 1
|
||
|
|
% Definitely no quadratic to model as all variables are bilinear at
|
||
|
|
% most
|
||
|
|
Fconv = Fconv + F(i);
|
||
|
|
elseif is(F(i),'element-wise') & ~is(F(i),'linear') & ~is(F(i),'sigmonial')
|
||
|
|
% f-c'*x-x'*Q*x>0
|
||
|
|
fi = sdpvar(F(i));fi = fi(:);
|
||
|
|
%[Qs,cs,fs,x,info] = vecquaddecomp(fi);
|
||
|
|
for j = 1:length(fi)
|
||
|
|
fij = fi(j);
|
||
|
|
if isa(fij,'double')
|
||
|
|
if fij < 0
|
||
|
|
infeasible = 1;
|
||
|
|
warning('The problem is trivially infeasible. You have a term POSITIVE NUMBER < 0.');
|
||
|
|
return
|
||
|
|
end
|
||
|
|
end
|
||
|
|
% Q = Qs{j};c = cs{j};f = fs{j};
|
||
|
|
if max(variabletype(getvariables(fij))) <= 1
|
||
|
|
% There are at most bilinear terms, so it cannot be convex
|
||
|
|
info = 1;
|
||
|
|
else
|
||
|
|
[Q,c,f,x,info] = quaddecomp(fij);
|
||
|
|
end
|
||
|
|
if info==0
|
||
|
|
if nnz(Q)==0
|
||
|
|
% Oh, linear,...
|
||
|
|
Fconv = Fconv + (fi(j)>=0);
|
||
|
|
else
|
||
|
|
% Yes, quadratic, but convex?
|
||
|
|
% Change sign definitions
|
||
|
|
Q = -Q;
|
||
|
|
c = -c;
|
||
|
|
f = -f;
|
||
|
|
% Semi-definite case when only part of x in Q
|
||
|
|
% Occurs, e.g, in constraints like y'*Q*y < t
|
||
|
|
used = find(any(Q));Qred=Q(:,used);Qred = Qred(used,:);xred = x(used);
|
||
|
|
[R,p]=chol(Qred);
|
||
|
|
done = 0;
|
||
|
|
if p
|
||
|
|
% Safety check to account for low rank problems
|
||
|
|
if all(eig(full(Qred))>=-1e-12)
|
||
|
|
[u,s,v]=svd(full(Qred));
|
||
|
|
r=find(diag(s)>1e-12);
|
||
|
|
R=(u(:,r)*sqrt(s(r,r)))';
|
||
|
|
p=0;
|
||
|
|
else
|
||
|
|
% Try to detect rotated SOCP (x-d)'*A*(x-d)+k<= C*y*z
|
||
|
|
yzCandidates = find(~diag(Qred));
|
||
|
|
if length(yzCandidates) == 2 && nnz(c(yzCandidates))==0
|
||
|
|
%LU = yalmip('getbounds',getvariables(xred(yzCandidates)));
|
||
|
|
LU = LUhere(getvariables(xred(yzCandidates)),:);
|
||
|
|
if all(LU(:,1)>=0)
|
||
|
|
yzSubQ = Qred(yzCandidates,yzCandidates);
|
||
|
|
if yzSubQ(1,2) < 0
|
||
|
|
C = -2*yzSubQ(1,2);
|
||
|
|
xCandidates = setdiff(1:length(used),yzCandidates);
|
||
|
|
A = Qred(xCandidates,xCandidates);
|
||
|
|
[B,p]=chol(A);
|
||
|
|
if ~p
|
||
|
|
y = xred(yzCandidates(1));
|
||
|
|
z = xred(yzCandidates(2));
|
||
|
|
d = -A\(c(xCandidates)/2);
|
||
|
|
k = f-d'*A*d;
|
||
|
|
if abs(k)<= 1e-12
|
||
|
|
Fconv=Fconv + lmi(rcone(B*(xred(xCandidates)-d),.5*C*y,z));
|
||
|
|
no_changed = no_changed + 1;
|
||
|
|
i_changed = [i_changed i];
|
||
|
|
done = 1;
|
||
|
|
elseif k >= -1e-12
|
||
|
|
Fconv=Fconv + lmi(rcone([B*(xred(xCandidates)-d);sqrt(abs(k))],.5*C*y,z));
|
||
|
|
no_changed = no_changed + 1;
|
||
|
|
i_changed = [i_changed i];
|
||
|
|
done = 1;
|
||
|
|
else
|
||
|
|
p = 1;
|
||
|
|
end
|
||
|
|
end
|
||
|
|
end
|
||
|
|
end
|
||
|
|
end
|
||
|
|
end
|
||
|
|
end
|
||
|
|
if p==0 && ~done
|
||
|
|
% Write as second order cone
|
||
|
|
d = -c'*x-f;
|
||
|
|
if isa(d,'double')
|
||
|
|
if d<0
|
||
|
|
infeasible = 1;
|
||
|
|
return
|
||
|
|
else
|
||
|
|
Fconv=Fconv + lmi(cone([R*xred],sqrt(d)));
|
||
|
|
end
|
||
|
|
else
|
||
|
|
if length(c) == length(xred)
|
||
|
|
ctilde = -(R')\(c/2);
|
||
|
|
Fconv=Fconv + lmi(cone([R*xred;.5*(1-d)],.5*(1+d)));
|
||
|
|
else
|
||
|
|
Fconv=Fconv + lmi(cone([R*xred;.5*(1-d)],.5*(1+d)));
|
||
|
|
end
|
||
|
|
end
|
||
|
|
no_changed = no_changed + 1;
|
||
|
|
i_changed = [i_changed i];
|
||
|
|
elseif ~done
|
||
|
|
Fconv = Fconv + lmi(fi(j));
|
||
|
|
end
|
||
|
|
end
|
||
|
|
else
|
||
|
|
Fconv = Fconv + lmi(fi(j));
|
||
|
|
end
|
||
|
|
end
|
||
|
|
else
|
||
|
|
Fconv = Fconv + F(i);
|
||
|
|
end
|
||
|
|
end
|
||
|
|
if ~isempty(i_changed)
|
||
|
|
Forigquad = F(i_changed);
|
||
|
|
else
|
||
|
|
Fconv = F;
|
||
|
|
end
|