Dynamic-Calibration/utils/YALMIP-master/extras/convertquadratics.m

154 lines
6.2 KiB
Mathematica
Raw Normal View History

2019-12-18 11:25:45 +00:00
function [Fconv,no_changed,infeasible,Forigquad] = convertquadratics(F)
%CONVERTQUADRATICS Internal function to extract quadratic constraints
% ******************************
% LINEAR?
% ******************************
infeasible = 0;
Fconv = F;
no_changed = 0;
Forigquad = [];
if islinear(F)
return
end
[monomtable,variabletype] = yalmip('monomtable');
if any(variabletype == 4)
if issigmonial(F)
return
end
end
Fconv = lmi;
no_changed = 0;
i_changed = [];
% Make sure bounds a pre-processed, in case we look for rotated cone which
% requires us to know lower bounds
nv = yalmip('nvars');
LU = yalmip('getbounds',1:nv);
LUhere = getbounds(F,[],LU);
for i = 1:1:length(F)
if max(variabletype(getvariables(F(i)))) <= 1
% Definitely no quadratic to model as all variables are bilinear at
% most
Fconv = Fconv + F(i);
elseif is(F(i),'element-wise') & ~is(F(i),'linear') & ~is(F(i),'sigmonial')
% f-c'*x-x'*Q*x>0
fi = sdpvar(F(i));fi = fi(:);
%[Qs,cs,fs,x,info] = vecquaddecomp(fi);
for j = 1:length(fi)
fij = fi(j);
if isa(fij,'double')
if fij < 0
infeasible = 1;
warning('The problem is trivially infeasible. You have a term POSITIVE NUMBER < 0.');
return
end
end
% Q = Qs{j};c = cs{j};f = fs{j};
if max(variabletype(getvariables(fij))) <= 1
% There are at most bilinear terms, so it cannot be convex
info = 1;
else
[Q,c,f,x,info] = quaddecomp(fij);
end
if info==0
if nnz(Q)==0
% Oh, linear,...
Fconv = Fconv + (fi(j)>=0);
else
% Yes, quadratic, but convex?
% Change sign definitions
Q = -Q;
c = -c;
f = -f;
% Semi-definite case when only part of x in Q
% Occurs, e.g, in constraints like y'*Q*y < t
used = find(any(Q));Qred=Q(:,used);Qred = Qred(used,:);xred = x(used);
[R,p]=chol(Qred);
done = 0;
if p
% Safety check to account for low rank problems
if all(eig(full(Qred))>=-1e-12)
[u,s,v]=svd(full(Qred));
r=find(diag(s)>1e-12);
R=(u(:,r)*sqrt(s(r,r)))';
p=0;
else
% Try to detect rotated SOCP (x-d)'*A*(x-d)+k<= C*y*z
yzCandidates = find(~diag(Qred));
if length(yzCandidates) == 2 && nnz(c(yzCandidates))==0
%LU = yalmip('getbounds',getvariables(xred(yzCandidates)));
LU = LUhere(getvariables(xred(yzCandidates)),:);
if all(LU(:,1)>=0)
yzSubQ = Qred(yzCandidates,yzCandidates);
if yzSubQ(1,2) < 0
C = -2*yzSubQ(1,2);
xCandidates = setdiff(1:length(used),yzCandidates);
A = Qred(xCandidates,xCandidates);
[B,p]=chol(A);
if ~p
y = xred(yzCandidates(1));
z = xred(yzCandidates(2));
d = -A\(c(xCandidates)/2);
k = f-d'*A*d;
if abs(k)<= 1e-12
Fconv=Fconv + lmi(rcone(B*(xred(xCandidates)-d),.5*C*y,z));
no_changed = no_changed + 1;
i_changed = [i_changed i];
done = 1;
elseif k >= -1e-12
Fconv=Fconv + lmi(rcone([B*(xred(xCandidates)-d);sqrt(abs(k))],.5*C*y,z));
no_changed = no_changed + 1;
i_changed = [i_changed i];
done = 1;
else
p = 1;
end
end
end
end
end
end
end
if p==0 && ~done
% Write as second order cone
d = -c'*x-f;
if isa(d,'double')
if d<0
infeasible = 1;
return
else
Fconv=Fconv + lmi(cone([R*xred],sqrt(d)));
end
else
if length(c) == length(xred)
ctilde = -(R')\(c/2);
Fconv=Fconv + lmi(cone([R*xred;.5*(1-d)],.5*(1+d)));
else
Fconv=Fconv + lmi(cone([R*xred;.5*(1-d)],.5*(1+d)));
end
end
no_changed = no_changed + 1;
i_changed = [i_changed i];
elseif ~done
Fconv = Fconv + lmi(fi(j));
end
end
else
Fconv = Fconv + lmi(fi(j));
end
end
else
Fconv = Fconv + F(i);
end
end
if ~isempty(i_changed)
Forigquad = F(i_changed);
else
Fconv = F;
end