Dynamic-Calibration/trajectory_optmzn/traj_cost_lgr.m

38 lines
1.3 KiB
Mathematica
Raw Normal View History

2019-12-18 11:25:45 +00:00
function out = traj_cost_lgr(opt_vars,traj_par,ur10)
% -------------------------------------------------------------------
% This function computes cost in terms of condition number for
% trajectory optimization needed for dynamic parameter identification
% The computation of regressor matrix is obtained using screw
% theory methods.
% -------------------------------------------------------------------
% Trajectory parameters
N = traj_par.N;
wf = traj_par.wf;
T = traj_par.T;
t = traj_par.t;
% As paramters of the trajectory are in a signle vector we reshape them as
% to feed the function that computes the trajectory
ab = reshape(opt_vars,[12,N]);
a = ab(1:6,:); % sin coeffs
b = ab(7:12,:); % cos coeffs
% To guarantee that positions, velocities and accelerations are zero in the
% beginning and at time T, we add fifth order polynomial to fourier
% series. The parameters of the polynomial depends on the parameters of
% fourier series. Here we compute them.
c_pol = getPolCoeffs(T, a, b, wf, N, ur10.q0);
% Compute trajectory (Fouruer series + fifth order polynomail)
[q,qd,q2d] = mixed_traj(t, c_pol, a, b, wf, N);
% Obtain observation matrix by computing regressor for each sampling time
W = [];
for i = 1:length(t)
Y = base_regressor_UR10E(q(:,i),qd(:,i),q2d(:,i));
W = vertcat(W,Y);
end
out = cond(W);