99 lines
2.3 KiB
Mathematica
99 lines
2.3 KiB
Mathematica
|
|
function varargout = plog(varargin)
|
||
|
|
%PLOG
|
||
|
|
%
|
||
|
|
% y = PLOG(x)
|
||
|
|
%
|
||
|
|
% Computes concave perspective log, x(1)*log(x(2)/x(1)) on x>0
|
||
|
|
%
|
||
|
|
% Implemented as evalutation based nonlinear operator. Hence, the concavity
|
||
|
|
% of this function is exploited to perform convexity analysis and rigorous
|
||
|
|
% modelling.
|
||
|
|
|
||
|
|
switch class(varargin{1})
|
||
|
|
|
||
|
|
case 'double'
|
||
|
|
|
||
|
|
if ~isequal(prod(size(varargin{1})),2)
|
||
|
|
error('PLOG only defined for 2x1 arguments');
|
||
|
|
end
|
||
|
|
x = varargin{1};
|
||
|
|
% Safe version with defined negative values (helps fmincon when
|
||
|
|
% outside feasible region)
|
||
|
|
|
||
|
|
if isequal(x(1),[0])
|
||
|
|
varargout{1} = 0;
|
||
|
|
else
|
||
|
|
varargout{1} = x(1)*log(x(2)/x(1));
|
||
|
|
end
|
||
|
|
|
||
|
|
case 'sdpvar'
|
||
|
|
|
||
|
|
if ~isequal(prod(size(varargin{1})),2)
|
||
|
|
error('PLOG only defined for 2x1 arguments');
|
||
|
|
else
|
||
|
|
varargout{1} = yalmip('define',mfilename,varargin{1});
|
||
|
|
end
|
||
|
|
|
||
|
|
case 'char'
|
||
|
|
|
||
|
|
X = varargin{3};
|
||
|
|
|
||
|
|
operator = struct('convexity','concave','monotonicity','none','definiteness','none','model','callback');
|
||
|
|
operator.range = [-inf inf];
|
||
|
|
operator.domain = [0 inf];
|
||
|
|
operator.bounds = @bounds;
|
||
|
|
operator.convexhull = @convexhull;
|
||
|
|
operator.derivative = @derivative;
|
||
|
|
|
||
|
|
varargout{1} = [];
|
||
|
|
varargout{2} = operator;
|
||
|
|
varargout{3} = X;
|
||
|
|
|
||
|
|
otherwise
|
||
|
|
error('SDPVAR/PLOG called with CHAR argument?');
|
||
|
|
end
|
||
|
|
|
||
|
|
function dp = derivative(x)
|
||
|
|
z = x(2)/x(1);
|
||
|
|
dp = [log(z)-1;1./z];
|
||
|
|
|
||
|
|
function [L,U] = bounds(xL,xU)
|
||
|
|
xU(isinf(xU)) = 1e12;
|
||
|
|
x1 = xL(1)*log(xL(2)/xL(1));
|
||
|
|
x2 = xU(1)*log(xU(2)/xU(1));
|
||
|
|
x3 = xL(1)*log(xU(2)/xL(1));
|
||
|
|
x4 = xU(1)*log(xL(2)/xU(1));
|
||
|
|
L = min([x1 x2 x3 x4]);
|
||
|
|
|
||
|
|
% Stationary in x1 when x1 = x2*exp(-1)
|
||
|
|
% Increasing in x2, so max at border
|
||
|
|
p1 = [exp(-1)*xU(2);xU(2)];
|
||
|
|
x5 = p1(1)*log(p1(2)/p1(1));
|
||
|
|
if x5(1) >= xL(1) && x5(1) <= xU(1)
|
||
|
|
U = max([x1 x2 x3 x4 x5]);
|
||
|
|
else
|
||
|
|
U = max([x1 x2 x3 x4]);
|
||
|
|
end
|
||
|
|
|
||
|
|
function [Ax,Ay,b] = convexhull(xL,xU)
|
||
|
|
|
||
|
|
x1 = [xL(1);xL(2)];
|
||
|
|
x2 = [xU(1);xL(2)];
|
||
|
|
x3 = [xL(1);xU(2)];
|
||
|
|
x4 = [xU(1);xU(2)];
|
||
|
|
x5 = (xL+xU)/2;
|
||
|
|
|
||
|
|
f1 = plog(x1);
|
||
|
|
f2 = plog(x2);
|
||
|
|
f3 = plog(x3);
|
||
|
|
f4 = plog(x4);
|
||
|
|
f5 = plog(x5);
|
||
|
|
|
||
|
|
df1 = derivative(x1);
|
||
|
|
df2 = derivative(x2);
|
||
|
|
df3 = derivative(x3);
|
||
|
|
df4 = derivative(x4);
|
||
|
|
df5 = derivative(x5);
|
||
|
|
|
||
|
|
[Ax,Ay,b] = convexhullConcave2D(x1,f1,df1,x2,f2,df2,x3,f3,df3,x4,f4,df4,x5,f5,df5);
|