Dynamic-Calibration/utils/YALMIP-master/operators/logistic.m

64 lines
1.8 KiB
Mathematica
Raw Normal View History

2019-12-18 11:25:45 +00:00
function varargout = logistic(varargin)
% LOGISTIC Returns logistic function 1./(1+exp(-x))
%
% y = LOGISTIC(x)
%
% For a real vector x, LOGISTIC returns (1+exp(-x)).^-1
switch class(varargin{1})
case 'double'
x = varargin{1};
varargout{1} = 1./(1+exp(-x));
case 'sdpvar'
varargout{1} = InstantiateElementWise(mfilename,varargin{:});
case 'char'
[M,m] = derivebounds(varargin{3});
if m >= 0
operator = struct('convexity','concave','monotonicity','increasing','definiteness','positive','model','callback');
elseif M <= 0
operator = struct('convexity','convex','monotonicity','increasing','definiteness','positive','model','callback');
else
operator = struct('convexity','none','monotonicity','increasing','definiteness','positive','model','callback');
end
operator.convexhull = @convexhull;
operator.bounds = @bounds;
operator.derivative = @(x)logistic(x).*(1-logistic(x));
operator.inverse = @(x)(log(x)-log(1-x));
operator.range = [0 1];
varargout{1} = [];
varargout{2} = operator;
varargout{3} = varargin{3};
otherwise
error('SDPVAR/LOGISTIC called with CHAR argument?');
end
% Bounding functions for the branch&bound solver
function [L,U] = bounds(xL,xU)
L = 1./(1+exp(-xL));
U = 1./(1+exp(-xU));
function [Ax, Ay, b, K] = convexhull(xL,xU)
if xU <=0
fL = logistic(xL);
fU = logistic(xU);
dfL = fL*(1-fL);
dfU = fU*(1-fU);
[Ax,Ay,b] = convexhullConvex(xL,xU,fL,fU,dfL,dfU);
elseif xL>=0
fL = logistic(xL);
fU = logistic(xU);
dfL = fL*(1-fL);
dfU = fU*(1-fU);
[Ax,Ay,b] = convexhullConcave(xL,xU,fL,fU,dfL,dfU);
else
Ax = [];
Ay = [];
b = [];
end
K = [];