Dynamic-Calibration/utils/YALMIP-master/operators/cpower.m

90 lines
2.8 KiB
Mathematica
Raw Normal View History

2019-12-18 11:25:45 +00:00
function varargout = cpower(varargin)
%CPOWER Power of SDPVAR variable with convexity knowledge
%
% CPOWER is recommended if your goal is to obtain
% a convex model, since the function CPOWER is implemented
% as a so called nonlinear operator. (For p/q ==2 you can
% however just as well use the overloaded power)
%
% t = cpower(x,p/q)
%
% For negative p/q, the operator is convex.
% For positive p/q with p>q, the operator is convex.
% For positive p/q with p<q, the operator is concave.
%
% A domain constraint x>0 is automatically added if
% p/q not is an even integer.
%
% Note, the complexity of generating the conic representation
% of these variables are O(2^L) where L typically is the
% smallest integer such that 2^L >= min(p,q)
switch class(varargin{1})
case 'double'
varargout{1} = power(varargin{1},varargin{2});
case 'sdpvar' % Overloaded operator for SDPVAR objects. Pass on args and save them.
X = varargin{1};
if isreal(X)
dim = size(X);
X = reshape(X,prod(dim),1);
y = [];
for i = 1:prod(dim)
y = [y;yalmip('define',mfilename,extsubsref(X,i),varargin{2})];
end
y = reshape(y,dim);
varargout{1} = y;
else
error('CPOWER can only be applied to real vectors.');
end
case 'char' % YALMIP send 'model' when it wants the epigraph or hypograph
if isequal(varargin{1},'graph')
t = varargin{2}; % Second arg is the extended operator variable
X = varargin{3}; % Third arg and above are the args user used when defining t.
p = varargin{4};
if p>0
[p,q] = rat(abs(p));
F = pospower(X,t,p,q);
if p>q
convexity = 'convex';
monotonicity = 'increasing';
else
convexity = 'concave';
monotonicity = 'decreasing';
end
else
[p,q] = rat(abs(p));
F = negpower(X,t,p,q);
convexity = 'convex';
monotonicity = 'decreasing';
end
varargout{1} = F;
varargout{2} = struct('convexity',convexity,'monotonicity',monotonicity,'definiteness','positive','model','graph');
varargout{3} = X;
end
otherwise
end
function F = pospower(x,t,p,q)
if p>q
l = ceil(log2(abs(p)));
r = 2^l-p;
y = [ones(r,1)*x;ones(q,1)*t;ones(2^l-r-q,1)];
F = detset(x,y);
else
l = ceil(log2(abs(q)));
y = [ones(p,1)*x;ones(2^l-q,1)*t;ones(q-p,1)];
F = detset(t,y);
end
function F = negpower(x,t,p,q)
l = ceil(log2(abs(p+q)));
p = abs(p);
q = abs(q);
y = [ones(2^l-p-q,1);ones(p,1)*x;ones(q,1)*t];
F = detset(1,y);