Dynamic-Calibration/utils/YALMIP-master/@sdpvar/subsasgn.m

273 lines
11 KiB
Mathematica
Raw Normal View History

2019-12-18 11:25:45 +00:00
function y = subsasgn(X,I,Y)
%SUBASGN (overloaded)
try
if strcmp('()',I.type)
X_is_spdvar = isa(X,'sdpvar') | isa(X,'ndsdpvar');
Y_is_spdvar = isa(Y,'sdpvar') | isa(Y,'ndsdpvar');
if islogical(I.subs{1})
I.subs{1} = double(find(I.subs{1}));
end
if any(I.subs{1} <=0)
error('Index into matrix is negative or zero.');
end
switch 2*X_is_spdvar+Y_is_spdvar
case 1
% This code does not work properly
% Only work if b is undefined!!?!!
% generally ugly code...
y = Y;
[n_y,m_y] = size(Y);
y_lmi_variables = y.lmi_variables;
try
X0 = subsasgn(full(X),I,full(reshape(Y.basis(:,1),n_y,m_y)));
dim = size(X0);
y.basis = reshape(X0,prod(dim),1);
X = full(X)*0;
for i = 1:length(y_lmi_variables)
X0 = subsasgn(X,I,full(reshape(Y.basis(:,i+1),n_y,m_y)));
y.basis(:,i+1) = reshape(X0,prod(dim),1);
end
y.dim = dim;
% Reset info about conic terms
y.conicinfo = [0 0];
y.basis = sparse(y.basis);
if length(dim)>2
y = ndsdpvar(y);
end
y = flush(y);
catch
error(lasterr)
end
case 2
if ~isempty(Y)
if isa(Y,'uint8') || isa(Y,'uint16') || isa(Y,'uint32') || isa(Y,'uint64')
Y = sparse(double(Y));
elseif isnumeric(Y)
Y = sparse(Y);
else
Y = sparse(double(Y));
end
end
y = X;
% Special code for speed
% elements in vector replaced with constants
if min(X.dim(1),X.dim(2))==1 & (length(I.subs)==1)
y = X;
if isempty(Y)
y.basis(I.subs{1},:) = [];
if X.dim(1) == 1
y.dim(2) = y.dim(2) - length(unique(I.subs{1}));
else
y.dim(1) = y.dim(1) - length(unique(I.subs{1}));
end
else
y.basis(I.subs{1},1) = Y;
y.basis(I.subs{1},2:end) = 0;
end
if prod(y.dim)~=size(y.basis,1)
% Ah bugger, the dimension of the object was changed)
aux = X.basis(:,1);
aux = reshape(aux,X.dim);
aux(I.subs{1})=Y;
y.dim = size(aux);
end
y = clean(y);
% Reset info about conic terms
if isa(y,'sdpvar')
y.conicinfo = [0 0];
y = flush(y);
end
return;
end
x_lmi_variables = X.lmi_variables;
lmi_variables = [];
n = y.dim(1);
m = y.dim(2);
subX = sparse(subsasgn(full(reshape(X.basis(:,1),n,m)),I,Y));
y.basis = subX(:);
if isa(I.subs{1},'char')
I.subs{1} = 1:n;
end
if length(I.subs)>1
if isa(I.subs{2},'char')
I.subs{2} = 1:m;
end
end
if length(I.subs)>1
if length(I.subs{1})==1 & length(I.subs{2})~=1
I.subs{1} = repmat(I.subs{1},size(I.subs{2},1),size(I.subs{2},2));
elseif length(I.subs{2})==1 & length(I.subs{1})~=1
I.subs{2} = repmat(I.subs{2},size(I.subs{1},1),size(I.subs{1},2));
end
end
if length(I.subs)>1
ii = kron(I.subs{1}(:),ones(length(I.subs{2}),1));
jj = kron(ones(length(I.subs{1}),1),I.subs{2}(:));
LinearIndex = sub2ind([n m],ii,jj);
else
LinearIndex = I.subs{1};
end
if isempty(Y)
X.basis = X.basis(:,2:end);
X.basis(LinearIndex,:) = [];
y.basis = [y.basis(:,1) X.basis];
else
X.basis(LinearIndex,2:end)=sparse(0);
y.basis = [y.basis(:,1) X.basis(:,2:end)];
end
y.dim(1) = size(subX,1);
y.dim(2) = size(subX,2);
y = clean(y);
if isa(y,'sdpvar')
% Reset info about conic terms
y.conicinfo = [0 0];
y = flush(y);
end
case 3
z = X;
x_lmi_variables = X.lmi_variables;
y_lmi_variables = Y.lmi_variables;
% In a first run, we fix the constant term and null terms in the X basis
lmi_variables = [];
nx = X.dim(1);
mx = X.dim(2);
ny = Y.dim(1);
my = Y.dim(2);
if (mx==1) & (my == 1) & isempty(setdiff(y_lmi_variables,x_lmi_variables)) & (max(I.subs{1}) < nx) & length(I.subs)==1 & length(unique(I.subs{1}))==length(I.subs{1}) ;
% Fast specialized code for Didier
y = specialcode(X,Y,I);
return
end
subX = subsasgn(reshape(X.basis(:,1),nx,mx),I,reshape(Y.basis(:,1),ny,my));
[newnx, newmx] = size(subX);
j = 1;
yz = reshape(1:ny*my,ny,my);
subX2 = subsasgn(reshape(zeros(nx*mx,1),nx,mx),I,yz);
subX2 = subX2(:);
[ix,jx,sx] = find(subX2);
yz = 0*reshape(Y.basis(:,1),ny,my);
lmi_variables = zeros(1,length(x_lmi_variables));
A = reshape(1:nx*mx,nx,mx);
B = reshape(1:newnx*newmx,newnx,newmx);
rm = B(1:nx,1:mx);rm = rm(:);
[iix,jjx,ssx] = find(X.basis(:,2:end));
z.basis = [subX(:) sparse(rm(iix),jjx,ssx,newnx*newmx,size(X.basis,2)-1)];
z.basis(ix,2:end) = 0;
keep = find(any(z.basis(:,2:end),1));
z.basis = z.basis(:,[1 1+keep]);
lmi_variables2 = x_lmi_variables(keep);
z.lmi_variables = lmi_variables2;
lmi_variables = lmi_variables2;
all_lmi_variables = union(lmi_variables,y_lmi_variables);
in_z = ismembcYALMIP(all_lmi_variables,lmi_variables);
in_y = ismembcYALMIP(all_lmi_variables,y_lmi_variables);
z_ind = 2;
y_ind = 2;
basis = spalloc(size(z.basis,1),1+length(all_lmi_variables),0);
basis(:,1) = z.basis(:,1);
nz = size(subX,1);
mz = size(subX,2);
template = full(0*reshape(X.basis(:,1),nx,mx));
in_yin_z = 2*in_y + in_z;
if all(in_yin_z<3)
case1 = find(in_yin_z==1);
if ~isempty(case1)
basis(:,case1+1) = z.basis(:,2:1+length(case1));
in_yin_z(case1) = 0;
end
end
% Let's identify the indices at which we need to intervene
case1 = find(in_yin_z==1);
checkI = union(find(in_yin_z >= 2), setdiff(case1,case1+1));
if size(checkI,1) > size(checkI,2)
% Sometimes the in_yin_z vector is vertical (not
% always though), so we make sure that checkI, on
% which we'll iterate, is horizontal.
checkI = checkI';
end
for i = checkI
switch in_yin_z(i)
case 1
% We look for the end of the block of ones
% starting at i
iend = i + find([in_yin_z(i+1:end) 0] ~= 1, 1, 'first')-1;
basis(:,i+1:iend+1) = z.basis(:,z_ind:z_ind+(iend-i));z_ind = z_ind+(iend-i)+1;
case 2
temp = sparse(subsasgn(template,I,full(reshape(Y.basis(:,y_ind),ny,my))));
basis(:,i+1) = temp(:);
y_ind = y_ind+1;
case 3
Z1 = z.basis(:,z_ind);
Z4 = Y.basis(:,y_ind);
Z3 = reshape(Z4,ny,my);
Z2 = sparse(subsasgn(0*reshape(full(X.basis(:,1)),nx,mx),I,Z3));
temp = reshape(Z1,nz,mz)+Z2;
basis(:,i+1) = temp(:);
z_ind = z_ind+1;
y_ind = y_ind+1;
otherwise
end
end;
z.dim(1) = nz;
z.dim(2) = mz;
z.basis = basis;
z.lmi_variables = all_lmi_variables(:)';
y = z;
% Reset info about conic terms
y.conicinfo = [0 0];
y = flush(y);
otherwise
end
else
error('Reference type not supported');
end
catch
error(lasterr)
end
function y = specialcode(X,Y,I)
y = X;
X_basis = X.basis;
Y_basis = Y.basis;
ind = I.subs{1};ind = ind(:);
yvar_in_xvar = zeros(length(Y.lmi_variables),1);
for i = 1:length(Y.lmi_variables);
yvar_in_xvar(i) = find(X.lmi_variables==Y.lmi_variables(i));
end
y.basis(ind,:) = 0;
mapper = [1 1+yvar_in_xvar(:)'];mapper = mapper(:);
[i,j,k] = find(y.basis);
[ib,jb,kb] = find(Y_basis);
i = [i(:);ind(ib(:))];
j = [j(:);mapper(jb(:))];
k = [k(:);kb(:)];
y.basis = sparse(i,j,k,size(y.basis,1),size(y.basis,2));
y = clean(y);