66 lines
1.4 KiB
Mathematica
66 lines
1.4 KiB
Mathematica
|
|
function varargout = cabs(varargin)
|
||
|
|
%cabs (overloaded)
|
||
|
|
|
||
|
|
switch class(varargin{1})
|
||
|
|
|
||
|
|
case 'double'
|
||
|
|
varargout{1} = abs(varargin{1});
|
||
|
|
|
||
|
|
case 'sdpvar'
|
||
|
|
varargout{1} = InstantiateElementWise(mfilename,varargin{:});
|
||
|
|
|
||
|
|
case 'char'
|
||
|
|
|
||
|
|
operator = struct('convexity','convex','monotonicity','none','definiteness','positive','model','callback');
|
||
|
|
operator.derivative = @derivative;
|
||
|
|
operator.bounds = @bounds;
|
||
|
|
operator.convexhull = @convexhull;
|
||
|
|
varargout{1} = [];
|
||
|
|
varargout{2} = operator;
|
||
|
|
varargout{3} = varargin{3};
|
||
|
|
|
||
|
|
otherwise
|
||
|
|
error('SDPVAR/CABS called with CHAR argument?');
|
||
|
|
end
|
||
|
|
|
||
|
|
function df = derivative(x)
|
||
|
|
df = zeros(length(x),1);
|
||
|
|
df(x>0) = 1;
|
||
|
|
df(x<0) = -1;
|
||
|
|
|
||
|
|
% Bounding functions for the branch&bound solver
|
||
|
|
function [L,U] = bounds(xL,xU)
|
||
|
|
|
||
|
|
if xL <= 0 && xU >= 0
|
||
|
|
L = 0;
|
||
|
|
U = max(abs(xL),abs(xU));
|
||
|
|
elseif xL >= 0
|
||
|
|
L = xL;
|
||
|
|
U = xU;
|
||
|
|
else
|
||
|
|
L = abs(xU);
|
||
|
|
U = abs(xL);
|
||
|
|
end
|
||
|
|
|
||
|
|
function [Ax, Ay, b, K] = convexhull(xL,xU)
|
||
|
|
fL = abs(xL);
|
||
|
|
fU = abs(xU);
|
||
|
|
if fL == fU || xL>=0
|
||
|
|
Ax = -1;
|
||
|
|
Ay = 1;
|
||
|
|
b = 0;
|
||
|
|
K.f = 1;
|
||
|
|
K.l = 0;
|
||
|
|
elseif xU<=0
|
||
|
|
Ax = 1;
|
||
|
|
Ay = 1;
|
||
|
|
b = 0;
|
||
|
|
K.f = 1;
|
||
|
|
K.l = 0;
|
||
|
|
elseif xL < 0 && xU > 0
|
||
|
|
dfL = -1;
|
||
|
|
dfU = 1;
|
||
|
|
[Ax,Ay,b] = convexhullConvex(xL,xU,fL,fU,dfL,dfU);
|
||
|
|
K = [];
|
||
|
|
end
|