30 lines
542 B
Mathematica
30 lines
542 B
Mathematica
|
|
function v = newtonmonoms(p)
|
|||
|
|
% NEWTONMONOMS Computes all monoms inside half Newton polytope
|
|||
|
|
%
|
|||
|
|
% V = NEWTONMONOMS(P)
|
|||
|
|
%
|
|||
|
|
% Input
|
|||
|
|
% P : Scalar SDPVAR object
|
|||
|
|
%
|
|||
|
|
% Output
|
|||
|
|
% V : Vector with SDPVAR objects
|
|||
|
|
%
|
|||
|
|
% Example:
|
|||
|
|
%
|
|||
|
|
% sdpvar x y
|
|||
|
|
% sdisplay(newtonmonoms(1+x^4*y^2+x^2*y^4))
|
|||
|
|
%
|
|||
|
|
% See also NEWTONREDUCE, CONSISTENT, CONGRUENCEBLOCKS
|
|||
|
|
|
|||
|
|
% Author Johan L<EFBFBD>fberg
|
|||
|
|
% $Id: newtonmonoms.m,v 1.1 2006-03-30 13:27:20 joloef Exp $
|
|||
|
|
|
|||
|
|
if isa(p,'double')
|
|||
|
|
v = 1;
|
|||
|
|
else
|
|||
|
|
x = recover(depends(p));
|
|||
|
|
v = monolist(x,degree(p)/2);
|
|||
|
|
v = newtonreduce(v,p);
|
|||
|
|
end
|
|||
|
|
|