Dynamic-Calibration/utils/YALMIP-master/extras/fmincon_fun.m

91 lines
2.7 KiB
Mathematica
Raw Normal View History

2019-12-18 11:25:45 +00:00
function [f,df,xevaledout,dx] = fmincon_fun(x,model)
global latest_xevaled
global latest_x_xevaled
% Apply the precomputed evaluation scheme (if necessary)
xevaled = zeros(1,length(model.c));
xevaled(model.linearindicies) = x;
if ~model.SimpleLinearObjective
if isequal(x,latest_x_xevaled)
xevaled = latest_xevaled;
else
xevaled = apply_recursive_evaluation(model,xevaled);
latest_xevaled = xevaled;
latest_x_xevaled = x;
end
end
xevaledout=xevaled;
xevaled = xevaled(:);
if model.SimpleLinearObjective
f = model.f + model.c'*xevaled;
else
f = model.f + (model.c'+xevaled'*model.Q)*xevaled;
if isnan(f)
f = inf;
end
end
f=full(f);
df = [];
dx = [];
if nargout==1 || ~model.derivative_available
return
elseif model.SimpleLinearObjective
df = full(model.c(model.linearindicies));
elseif model.SimpleQuadraticObjective
df = full(model.c(model.linearindicies) + 2*model.Q(model.linearindicies,model.linearindicies)*x);
elseif model.SimpleNonlinearObjective
requested = model.c | any(model.Q,2);
[i,j,k] = find((model.deppattern(find(requested),:)));
requested(j) = 1;
df = [];
n = length(model.c);
linearindicies = model.linearindicies;
mtNonlinear = model.monomtable(model.nonlinearindicies,:);
xevaled = zeros(1,n);
xevaled(linearindicies) = x;
X = repmat(xevaled,size(mtNonlinear,1),1);
r = find(mtNonlinear);
used = find(any(mtNonlinear,1));
mtCompressed = mtNonlinear(:,used);
rCompressed = find(mtCompressed);
X = X(r);
Xones = ones(size(mtNonlinear,1),size(mtCompressed,2));
for i = 1:length(linearindicies)
if requested(i)
mt = mtNonlinear;
oldpower = mtNonlinear(:,linearindicies(i));
mt(:,linearindicies(i)) = mt(:,linearindicies(i))-1;
Z = X.^mt(r);
XX = Xones;
XX(rCompressed) = Z;
xevaledNonLinear = prod(XX,2);
xevaledNonLinear = xevaledNonLinear(:)'.*oldpower';xevaledNonLinear(isnan(xevaledNonLinear))=0;
dx = zeros(1,n);
dx(linearindicies(i)) = 1;
dx(model.nonlinearindicies) = xevaledNonLinear;
df = [df;model.c'*dx'];
else
df = [df;zeros(1,length(n))];
end
end
df = real(df + 2*model.Q(model.linearindicies,model.linearindicies)*x);
df = full(df);
elseif nargout > 1
requested = model.c | any(model.Q,2);
[i,j,k] = find((model.deppattern(find(requested),:)));
requested(j) = 1;
dx = apply_recursive_differentiation(model,xevaled,requested,model.frecursivederivativeprecompute);
df = model.c'*dx+2*xevaled'*model.Q*dx;
df = full(df);
else
df = [];
end