Dynamic-Calibration/utils/YALMIP-master/extras/binmodel.m

288 lines
9.1 KiB
Mathematica
Raw Normal View History

2019-12-18 11:25:45 +00:00
function varargout = binmodel(varargin)
%BINMODEL Converts nonlinear mixed binary expression to linear model
%
% Applied to individual terms p defined on domain D
% [plinear1,..,plinearN,Cuts] = BINMODEL(p1,...,pN,D)
%
% Alternative on complete set of constraint
% F = BINMODEL(F)
%
% binmodel is used to convert nonlinear expressions involving a mixture of
% continuous and binary variables to the correponding linear model, using
% auxilliary variables and constraints to model nonlinearities.
%
% The input arguments are polynomial SDPVAR objects, or constraints
% involving such terms. If all involved variables are binary (defined using
% BINVAR), arbitrary polynomials can be linearized.
%
% If an input contains continuous variables, the continuous variables
% may only enter linearly in products with the binary variables (i.e.
% degree w.r.t continuous variables should be at most 1). More over, all
% continuous variables must be explicitly bounded. When submitting only the
% terms, the domain must be explicitly sent as the last argument. When the
% argument is a set of constraints, it is assumed that the domain is
% included and can be extracted.
%
% Example
% binvar a b
% sdpvar x y
% [plinear1,plinear2,Cuts] = binmodel(a^3+b,a*b);
% [plinear1,plinear2,Cuts] = binmodel(a^3*x+b*y,a*b*x, -2 <=[x y] <=2);
%
% F = binmodel([a^3*x+b*y + a*b*x >= 3, -2 <=[x y] <=2]);
%
% See also BINARY, BINVAR, OPTIMIZE
if isa(varargin{1},'lmi') || isa(varargin{1},'constraint')
varargout{1} = binmodel_constraint(varargin{:});
return
end
all_linear = 1;
p = [];
n_var = 0;
Foriginal = [];
for i = 1:nargin
switch class(varargin{i})
case {'sdpvar','ndsdpvar'}
dims{i} = size(varargin{i});
p = [p;varargin{i}(:)];
if degree(varargin{i}(:)) > 1
all_linear = 0;
end
n_var = n_var + 1;
case {'lmi','constraint'}
Foriginal = Foriginal + varargin{i};
otherwise
error('Arguments should be SDPVAR or SET objects')
end
end
if length(Foriginal)>0
nv = yalmip('nvars');
yalmip('setbounds',1:nv,repmat(-inf,nv,1),repmat(inf,nv,1));
LU = getbounds(Foriginal);
extstruct = yalmip('extstruct');
extendedvariables = yalmip('extvariables');
for i = 1:length(extstruct)
switch extstruct(i).fcn
case 'abs'
LU = extract_bounds_from_abs_operator(LU,extstruct,extendedvariables,i);
case 'norm'
LU = extract_bounds_from_norm_operator(LU,extstruct,extendedvariables,i);
case 'min_internal'
LU = extract_bounds_from_min_operator(LU,extstruct,extendedvariables,i);
case 'max_internal'
LU = extract_bounds_from_max_operator(LU,extstruct,extendedvariables,i);
otherwise
end
end
yalmip('setbounds',1:nv,LU(:,1),LU(:,2));
end
if all_linear
varargout = varargin;
return
end
plinear = p;
F = Foriginal;
% Get stuff
vars = getvariables(p);
basis = getbase(p);
[mt,vt] = yalmip('monomtable');
allbinary = yalmip('binvariables');
allinteger = yalmip('intvariables');
% Fix data (monom table not guaranteed to be square)
if size(mt,1) > size(mt,2)
mt(end,size(mt,1)) = 0;
end
non_binary = setdiff(1:size(mt,2),allbinary);
if any(sum(mt(vars,non_binary),2) > 1)
error('Expression has to be linear in the continuous variables')
violatingmonoms = find(sum(mt(vars,non_binary),2) > 1);
cuts = [];
replacelinear = [];
for i = 1:length(violatingmonoms)
[~,idx,pwr] = find(mt(vars(violatingmonoms(i)),non_binary));
% [~,idxb,pwrb] = find(mt(vars(violatingmonoms),allbinary));
if isequal(pwr,2)
[~,idxb,pwrb] = find(mt(vars(violatingmonoms(i)),allbinary));
if isequal(pwrb,1)
w = sdpvar(1);
replacelinear = [replacelinear;getvariables(w)];
cuts = [cuts, recover(non_binary(idx))*recover(allbinary(idxb)) == w];
cuts = [cuts, LU(non_binary(idx),1) <= w <= LU(non_binary(idx),2)];
else
error('Expression has to be linear in the continuous variables')
end
else
error('Expression has to be linear in the continuous variables')
end
end
b = getbase(p);
v = getvariables(p);
v(violatingmonoms) = replacelinear;
p = b*[1;recover(v)];
varargin{1} = p;
varargin{end} = [varargin{end},cuts];
[varargout{1:nargout}] = binmodel(varargin{:});
return
end
% These are the original monomials
vecvar = recover(vars);
linear = find(vt(vars) == 0);
quadratic = find(vt(vars) == 2);
bilinear = find(vt(vars) == 1);
polynomial = find(vt(vars) == 3);
% replace x^2 with x (can only be binary expression, since we check for
% continuous nonlinearities above)
if ~isempty(quadratic)
[ii,jj] = find(mt(vars(quadratic),:));
z_quadratic = recover(jj);
else
quadratic = [];
z_quadratic = [];
end
% replace x*y with z, x>z, x>z, 1+z>x+y
if ~isempty(bilinear)
[jj,ii] = find(mt(vars(bilinear),:)');
xi = jj(1:2:end);
yi = jj(2:2:end);
x = recover(xi);
y = recover(yi);
if all(ismember(xi,allbinary)) & all(ismember(yi,allbinary))
% fast case for binary*binary
z_bilinear = binvar(length(bilinear),1);
F = [F, binary(z_bilinear), x >= z_bilinear, y >= z_bilinear, 1+z_bilinear >= x + y, 0 <= z_bilinear <= 1];
else
z_bilinear = sdpvar(length(bilinear),1);
theseAreBinaries = find(ismember(xi,allbinary) & ismember(yi,allbinary));
z_bilinear(theseAreBinaries) = binvar(length(theseAreBinaries),1);
for i = 1:length(bilinear)
if ismember(xi(i),allbinary) & ismember(yi(i),allbinary)
F = [F, x(i) >= z_bilinear(i), y(i) >= z_bilinear(i), 1+z_bilinear(i) >= x(i) + y(i), 0 <= z_bilinear(i) <= 1];
elseif ismember(xi(i),allbinary)
F = [F, binary_times_cont(x(i),y(i), z_bilinear(i))];
else
F = [F, binary_times_cont(y(i),x(i), z_bilinear(i))];
end
end
end
else
bilinear = [];
z_bilinear = [];
end
%general case a bit slower
if ~isempty(polynomial)
z_polynomial = sdpvar(length(polynomial),1);
xvar = [];
yvar = [];
for i = 1:length(z_polynomial)
% Get the monomial powers, clear out the
the_monom = mt(vars(polynomial(i)),:);
if any(the_monom(non_binary))
% Tricky case, x*polynomial(binary)
% Start by first modeling the binary part
the_binary_monom = the_monom;the_binary_monom(non_binary) = 0;
[ii,jj] = find(the_binary_monom);
x = recover(jj);
F = [F, x >= z_polynomial(i), length(x)-1+z_polynomial(i) >= sum(x), 0 <= z_polynomial(i) <= 1];
% Now define the actual variable
temp = z_polynomial(i);z_polynomial(i) = sdpvar(1,1);
the_real_monom = the_monom;the_real_monom(allbinary)=0;
[ii,jj] = find(the_real_monom);
x = recover(jj);
F = F + binary_times_cont(temp,x,z_polynomial(i));
else
% simple case, just binary terms
[ii,jj] = find(the_monom);
x = recover(jj);
F = [F, x >= z_polynomial(i), length(x)-1+z_polynomial(i) >= sum(x), binary(z_polynomial(i))];
end
end
else
z_polynomial = [];
polynomial = [];
end
ii = [linear quadratic bilinear polynomial];
jj = ones(length(ii),1);
kk = [recover(vars(linear));z_quadratic;z_bilinear;z_polynomial];
vecvar = sparse(ii(:),jj(:),kk(:));
% Recover the whole thing
plinear = basis*[1;vecvar];
% And now get the original sizes
top = 1;
for i = 1:n_var
varargout{i} = reshape(plinear(top:top+prod(dims{i})-1),dims{i});
top = top + prod(dims{i});
end
varargout{end+1} = F;
function F = binary_times_cont(d,y, z)
[M,m,infbound] = derivebounds(y);
if infbound
error('Some of your continuous variables are not explicitly bounded.')
end
F = [(1-d)*M >= y - z >= m*(1-d), d*m <= z <= d*M, min(0,m) <= z <= max(0,M)];
function Fnew = binmodel_constraint(F);
F = lmi(F);
old_x = [];
for i = 1:length(F)
xi = sdpvar(F(i));
old_x = [old_x;xi(:)];
end
[new_x,Cut] = binmodel(old_x,F);
Fnew = [];
top = 1;
for i = 1:length(F)
m = prod(size(sdpvar(F(i))));
xi = new_x(top:top + m-1);
xo = old_x(top:top + m-1);
top = top + m;
if ~isequal(xi,xo)
switch settype(F(i))
case 'elementwise'
Fnew = [Fnew, xi >= 0];
case 'equality'
Fnew = [Fnew, xi == 0];
case 'socc'
Fnew = [Fnew, cone(xi)];
case 'sdp'
Fnew = [Fnew, reshape(xi,sqrt(m),sqrt(m)) >= 0];
otherwise
error('Type of constraint not supported in binmodel');
end
else
Fnew = [Fnew, subsref(F,struct('type','()','subs',{{i}}))];
end
end
% The internal function merges the original constraints into Cut
% remove them completely, and then add the original noncomplicating again
Cut = Cut - F;
Fnew = [Fnew,Cut];