Dynamic-Calibration/utils/SDPT3-4.0/Examples/ToeplitzApprox.m

54 lines
1.8 KiB
Mathematica
Raw Normal View History

2019-12-18 11:25:45 +00:00
%%*************************************************************************
%% ToeplitzApprox: find the nearest symmetric positive definite Toeplitz
%% matrix to a given symmetric matrix F.
%%
%% max -y(n+1)
%% s.t. T(y(1:n)) + y(n+1)*B >= 0
%% [I 0 ] + sum_{k=1}^n y(k) [0 gam(k)*e_k ] + y(n+1)*B >= 0
%% [0 -beta] [gam(k)*e_k' -2q(k) ]
%%
%% where B = diag([zeros(n,1); 1])
%% q(1) = - Tr(F); q(k+1) = -sum of upper and lower kth diagonals of F
%% gam(1) = sqrt(n); gam(k) = sqrt(2*(n-k+1)) for k=2:n
%% beta = norm(F,'fro')^2
%%*****************************************************************
%% SDPT3: version 4.0
%% Copyright (c) 1997 by
%% Kim-Chuan Toh, Michael J. Todd, Reha H. Tutuncu
%% Last Modified: 16 Sep 2004
%%*****************************************************************
function [blk,At,C,b] = ToeplitzApprox(F)
n = length(F);
gam = sqrt([n, 2*(n-1:-1:1)]);
q = zeros(n,1);
q(1) = -sum(diag(F));
for k=1:n-1
q(k+1) = -2*sum(diag(F,k));
end
beta = norm(F,'fro')^2;
blk{1,1} = 's'; blk{1,2} = n+1;
blk{2,1} = 's'; blk{2,2} = n+1;
b = [zeros(n,1); -1];
C{1,1} = sparse(n+1,n+1);
C{2,1} = spdiags([ones(n,1); -beta],0,n+1,n+1);
Acell = cell(1,n+1);
Acell{1} = -spdiags([ones(n,1); 0],0,n+1,n+1);
for k = 1:n-1
tmp = -spdiags([ones(n,1); 0],k,n+1,n+1);
Acell{k+1} = tmp + tmp';
end
Acell{n+1} = -spconvert([n+1,n+1,1]);
At(1,1) = svec(blk(1,:),Acell,1);
for k = 1:n
Acell{k} = -spconvert([k, n+1, gam(k); n+1, k, gam(k); n+1, n+1, -2*q(k)]);
end
Acell{n+1} = -spconvert([n+1,n+1,1]);
At(2,1) = svec(blk(2,:),Acell,1);
%%***********************************************************************