52 lines
1.9 KiB
Mathematica
52 lines
1.9 KiB
Mathematica
|
|
function p = updatenonlinearbounds(p,changed_var,keepbest);
|
||
|
|
|
||
|
|
dbstack
|
||
|
|
error
|
||
|
|
if ~isempty(p.bilinears)
|
||
|
|
x = p.bilinears(:,2);
|
||
|
|
y = p.bilinears(:,3);
|
||
|
|
z = p.bilinears(:,1);
|
||
|
|
x_lb = p.lb(x);
|
||
|
|
x_ub = p.ub(x);
|
||
|
|
y_lb = p.lb(y);
|
||
|
|
y_ub = p.ub(y);
|
||
|
|
bounds = [x_lb.*y_lb x_lb.*y_ub x_ub.*y_lb x_ub.*y_ub];
|
||
|
|
new_lb = max([p.lb(z) min(bounds,[],2)],[],2);
|
||
|
|
new_ub = min([p.ub(z) max(bounds,[],2)],[],2);
|
||
|
|
% Avoid updating small bounds (numerical reasons)
|
||
|
|
update = find(p.lb(z) < p.ub(z)-1e-4);
|
||
|
|
p.lb(z(update)) = new_lb(update);
|
||
|
|
p.ub(z(update)) = new_ub(update);
|
||
|
|
|
||
|
|
p.lb(p.integer_variables) = fix(p.lb(p.integer_variables));
|
||
|
|
p.ub(p.integer_variables) = fix(p.ub(p.integer_variables));
|
||
|
|
p.lb(p.binary_variables) = fix(p.lb(p.binary_variables));
|
||
|
|
p.ub(p.binary_variables) = fix(p.ub(p.binary_variables));
|
||
|
|
|
||
|
|
quadratic_variables = p.bilinears(x==y,1);
|
||
|
|
p.lb(quadratic_variables(p.lb(quadratic_variables)<0)) = 0;
|
||
|
|
end
|
||
|
|
|
||
|
|
if ~isempty(p.high_monom_model)
|
||
|
|
for i = 1:size(p.high_monom_model,1)
|
||
|
|
j = p.high_monom_model(i,1);
|
||
|
|
[a,b,c] = find(p.high_monom_model(i,2:end));
|
||
|
|
if length(a) == 1
|
||
|
|
if even(c)
|
||
|
|
% fix this case...
|
||
|
|
% p.ub(b) = min([p.ub(b) sign(p.ub(j))*(abs(p.ub(j))^(1/c))]);
|
||
|
|
% p.lb(b) = max([p.lb(b) sign(p.lb(j))*(abs(p.lb(j))^(1/c))]);
|
||
|
|
else
|
||
|
|
if c>0
|
||
|
|
p.ub(b) = min([p.ub(b) sign(p.ub(j))*(abs(p.ub(j))^(1/c))]);
|
||
|
|
p.lb(b) = max([p.lb(b) sign(p.lb(j))*(abs(p.lb(j))^(1/c))]);
|
||
|
|
else
|
||
|
|
% if p.lb(b)>0
|
||
|
|
% p.ub(b) = min([p.ub(b) sign(p.lb(j))*(abs(p.lb(j))^(1/c))]);
|
||
|
|
% p.lb(b) = max([p.lb(b) sign(p.ub(j))*(abs(p.ub(j))^(1/c))]);
|
||
|
|
% end
|
||
|
|
end
|
||
|
|
end
|
||
|
|
end
|
||
|
|
end
|
||
|
|
end
|