Dynamic-Calibration/utils/YALMIP-master/@sdpvar/horzcat.m

157 lines
4.2 KiB
Mathematica
Raw Normal View History

2019-12-18 11:25:45 +00:00
function y = horzcat(varargin)
%HORZCAT (overloaded)
prenargin = nargin;
% Fast exit
if prenargin<2
y=varargin{1};
return
end
if nargin>20
y = horzcat(horzcat(varargin{1:fix(nargin/2)}),horzcat(varargin{fix((nargin/2))+1:end}));
return
end
% Get dimensions
n = zeros(prenargin,1);
m = zeros(prenargin,1);
for i = 1:prenargin
if isa(varargin{i},'blkvar')
varargin{i} = sdpvar(varargin{i});
end
[n(i),m(i)]=size(varargin{i});
end
% Keep only non-empty
keep_these = find((n.*m)~=0);
if length(keep_these)<length(n)
varargin = {varargin{keep_these}};
n = n(keep_these);
m = m(keep_these);
end;
% All heights should be equal
if any(n~=n(1))
error('All matrices on a row in the bracketed expression must have the same number of rows.');
end
nblocks = size(varargin,2);
isasdpvar = zeros(nblocks,1);
isachar = zeros(nblocks,1);
for i = 1:nblocks
if isa(varargin{i},'sdpvar')
isasdpvar(i) = 1;
elseif isa(varargin{i},'char');
isachar(i) = 1;
end
end
% Finish if this is a symbolic expression
% including '?' operators
if any(isachar)
y = blkvar;
for i = 1:nargin
if isachar(i)
switch varargin{i}
case {'i','I'}
y(1,i) = 1;
case {'s'}
case 'z'
y(1,i) = 0;
otherwise
end
else
y(1,i) = varargin{i};
end
end
return
end
% Find all free variables used
all_lmi_variables = [];
for i = 1:nblocks
if isasdpvar(i)
all_lmi_variables = [all_lmi_variables varargin{i}.lmi_variables];
end
end
all_lmi_variables = uniquestripped(all_lmi_variables);
% Pick one of the sdpvar objects to build on...
y = varargin{min(find(isasdpvar))};
% Some indexation tricks
n = n(1);
basis_i = [];
basis_j = [];
basis_s = [];
shft = 0;
for j = 1:nblocks
if isasdpvar(j)
if length(all_lmi_variables)==length(varargin{j}.lmi_variables) && all_lmi_variables(1)==varargin{j}.lmi_variables(1) && all_lmi_variables(end)==varargin{j}.lmi_variables(end)
% Avoid call to ismember and find
in_this = 1:length(all_lmi_variables);
else
members = ismembcYALMIP(all_lmi_variables,varargin{j}.lmi_variables);
in_this = find(members);
end
dummy = [1 1+in_this];
[i2,j2,s2] = find(varargin{j}.basis);
j2 = dummy(j2);
add_shift = size(varargin{j}.basis,1);
else
[i2,j2,s2] = find(varargin{j}(:));
add_shift = size(varargin{j}(:),1);
end
basis_i = [basis_i;i2(:)+shft];
basis_j = [basis_j;j2(:)];
basis_s = [basis_s;s2(:)];
shft = shft + add_shift;
end
basis = sparse(basis_i,basis_j,basis_s,sum(m)*n,1+length(all_lmi_variables));
y.dim(1) = n;
y.dim(2) = sum(m);
y.basis = basis;
y.lmi_variables = all_lmi_variables;
% Reset info about conic terms
y.conicinfo = [0 0];
y.extra.opname='';
y.extra.createTime = definecreationtime;
y = unfactor(y);
% Update the factors
% But first, check to see that factors exist in all terms, if not simply
% exit
for i = 1:length(varargin)
if isa(varargin{i},'sdpvar')
if length(varargin{i}.leftfactors)==0
y = flush(y);
return
end
end
end
doublehere = [];
for i = 1:length(varargin)
if isa(varargin{i},'sdpvar')
for j = 1:length(varargin{i}.leftfactors)
h = size(varargin{i}.rightfactors{j},1);
y.rightfactors{end+1} = [spalloc(h,sum(m(1:1:i-1)),0) varargin{i}.rightfactors{j} spalloc(h,sum(m(i+1:1:end)),0)];
y.midfactors{end+1} = varargin{i}.midfactors{j};
y.leftfactors{end+1} = varargin{i}.leftfactors{j};
end
elseif isnumeric(varargin{i})
if ~all(varargin{i}==0)
% if ~doublehere
here = length(y.midfactors)+1;
% doublehere = [doublehere here];
% end
y.rightfactors{here} = [spalloc(m(i),sum(m(1:1:i-1)),0) speye(m(i)) spalloc(m(i),sum(m(i+1:1:end)),0)];
y.midfactors{here} = varargin{i};
y.leftfactors{here} = speye(size(varargin{i},1));
end
end
end
y = cleandoublefactors(y);
y = flushmidfactors(y);