Dynamic-Calibration/utils/YALMIP-master/@sdpvar/exp.m

72 lines
1.8 KiB
Mathematica
Raw Normal View History

2019-12-18 11:25:45 +00:00
function varargout = exp(varargin)
%EXP (overloaded)
switch class(varargin{1})
case 'sdpvar'
x = varargin{1};
d = size(x);
x = x(:);
y = [];
for i = 1:prod(d)
xi = extsubsref(x,i);
if isnumeric(xi)
y = [y;exp(xi)];
else
if isreal(xi)
if i>1
y = [y;InstantiateElementWise(mfilename,xi)];
else
y = InstantiateElementWise(mfilename,xi);
end
else
re = real(xi);
im = imag(xi);
y = [y;exp(re)*(cos(im) + sqrt(-1)*sin(im))];
end
end
end
varargout{1} = reshape(y,d);
case 'char'
varargout{1} = [];
varargout{2} = createOperator;
varargout{3} = varargin{3};
otherwise
error('SDPVAR/EXP called with CHAR argument?');
end
function operator = createOperator
operator = struct('convexity','convex','monotonicity','increasing','definiteness','positive','model','callback');
operator.convexhull = @convexhull;
operator.bounds = @bounds;
operator.derivative = @(x)exp(x);
operator.inverse = @(x)log(x);
operator.range = [0 inf];
% Bounding functions for the branch&bound solver
function [L,U] = bounds(xL,xU)
L = exp(xL);
U = exp(xU);
function [Ax, Ay, b, K] = convexhull(xL,xU)
fL = exp(xL);
fU = exp(xU);
if fL == fU
Ax = [];
Ay = [];
b = [];
else
dfL = exp(xL);
dfU = exp(xU);
% A cut with tangent parallell to upper bound is very efficient
xM = log((fU-fL)/(xU-xL));
fM = exp(xM);
dfM = exp(xM);
[Ax,Ay,b] = convexhullConvex(xL,xM,xU,fL,fM,fU,dfL,dfM,dfU);
end
K = [];