Dynamic-Calibration/utils/SDPT3-4.0/Examples/ToeplitzApproxSQQ.m

47 lines
1.5 KiB
Mathematica
Raw Normal View History

2019-12-18 11:25:45 +00:00
%%*************************************************************************
%% ToeplitzApproxSQQ: find the nearest symmetric positive definite Toeplitz
%% matrix to a given symmetric matrix F.
%%
%% max -y0
%% s.t. y0*B + T(y) (S>=) 0
%% [y0; gam.*y] + [0; q./gam] (Q>=) 0
%%
%% where B = diag([zeros(n,1); 1])
%% q(1) = - Tr(F); q(k+1) = -sum of upper and lower kth diagonals of F
%% gam(1) = sqrt(n); gam(k) = sqrt(2*(n-k+1)) for k=2:n
%%*****************************************************************
%% SDPT3: version 4.0
%% Copyright (c) 1997 by
%% Kim-Chuan Toh, Michael J. Todd, Reha H. Tutuncu
%% Last Modified: 16 Sep 2004
%%*****************************************************************
function [blk,At,C,b] = ToeplitzApproxSQQ(F)
n = length(F);
gam = sqrt([n, 2*(n-1:-1:1)]');
q = zeros(n,1);
q(1) = -sum(diag(F));
for k=1:n-1
q(k+1) = -2*sum(diag(F,k));
end
beta = norm(F,'fro')^2;
blk{1,1} = 's'; blk{1,2} = n+1;
blk{2,1} = 'q'; blk{2,2} = n+1;
b = [-1; zeros(n,1)];
C{1,1} = sparse(n+1,n+1);
C{2,1} = [0; q./gam];
Acell = cell(1,n+1);
Acell{1} = -spconvert([n+1,n+1,1]);
Acell{2} = -spdiags([ones(n,1); 0],0,n+1,n+1);
for k = 1:n-1
tmp = -spdiags([ones(n,1); 0],k,n+1,n+1);
Acell{k+2} = tmp + tmp';
end
At(1,1) = svec(blk(1,:),Acell,1);
At{2,1} = -spdiags([1; gam],0,n+1,n+1);
%%***********************************************************************