Dynamic-Calibration/utils/YALMIP-master/@sdpvar/matrixpolynomial.m

63 lines
1.4 KiB
Mathematica
Raw Permalink Normal View History

2019-12-18 11:25:45 +00:00
function [p,c,v] = matrixpolynomial(x,n,dmax,dmin)
%MATRIXPOLYNOMIAL Creates parameterized polynomial
%
% [p,c,v] = matrixpolynomial(x,n,dmax,dmin)
%
% MATRIXPOLYNOMIAL is a quick way to define a parameterized polynomial
% p=sum C_i v_i(x) with all monomials of dmin <= degree(p,x) <= dmax. The
% coefficients in the polynomial are C_i while v is the monomial basis.
%
% Example:
%
% Paramterized quartic 2x2 matrix
% x = sdpvar(2,1);
% p = matrixpolynomial(x,2,4);
%
% See also MONOLIST, COEFFICIENTS
if (length(dmax) > 1) && (length(dmax) ~= length(x))
error('Dimension mismatch: The third argument should be the max degree for each variable, or a sclar');
end
if nargin > 3
if (length(dmin) > 1) && (length(dmin) ~= length(x))
error('Dimension mismatch: The third argument should be the max degree for each variable, or a sclar');
end
end
if any(dmax < 0)
error('Only non-negative polynomial degrees possible')
end
if nargin<4
dmin = 0;
end
if any(dmin > dmax)
error('Fourth argument (dmin) should not be larger than second argument (dmax)');
end
if any(dmin < 0)
error('Only non-negative polynomial degrees possible')
end
if length(n)==1
n = [n n];
end
v = monolist(x,dmax);
if dmin <= dmax & dmin>0
s = nchoosek(length(x) + dmin-1,dmin-1);
v = extsubsref(v,s+1:length(v));
end
p = 0;
c = [];
for i = 1:length(v)
Ci = sdpvar(n(1),n(2));
c = [c reshape(Ci,[],1)];
end
p = reshape(c*v,n(1),n(2));