37 lines
881 B
Mathematica
37 lines
881 B
Mathematica
|
|
function varargout = asec(varargin)
|
||
|
|
%ASEC (overloaded)
|
||
|
|
|
||
|
|
switch class(varargin{1})
|
||
|
|
|
||
|
|
case 'sdpvar'
|
||
|
|
varargout{1} = InstantiateElementWise(mfilename,varargin{:});
|
||
|
|
|
||
|
|
case 'char'
|
||
|
|
|
||
|
|
operator = struct('convexity','none','monotonicity','none','definiteness','none','model','callback');
|
||
|
|
operator.convexhull = [];
|
||
|
|
operator.bounds = @bounds;
|
||
|
|
operator.derivative = @(x)(1./(x.*(x.^2-1).^0.5));
|
||
|
|
|
||
|
|
varargout{1} = [varargin{3}.^2 >= 1]; % Disconnected domain
|
||
|
|
varargout{2} = operator;
|
||
|
|
varargout{3} = varargin{3};
|
||
|
|
|
||
|
|
otherwise
|
||
|
|
error('SDPVAR/ASEC called with CHAR argument?');
|
||
|
|
end
|
||
|
|
|
||
|
|
function [L,U] = bounds(xL,xU)
|
||
|
|
if xU <= -1 || xL >= 1
|
||
|
|
L = asec(xL);
|
||
|
|
U = asec(xU);
|
||
|
|
elseif xL < 0 & xU > 0
|
||
|
|
L = 0;
|
||
|
|
U = pi;
|
||
|
|
elseif xU < 0 || xL > 0
|
||
|
|
L = real(asec(xL));
|
||
|
|
U = real(asec(xU));
|
||
|
|
else
|
||
|
|
L = 0;
|
||
|
|
U = pi;
|
||
|
|
end
|