Dynamic-Calibration/utils/SDPT3-4.0/Examples/gpp.m

73 lines
2.1 KiB
Mathematica
Raw Permalink Normal View History

2019-12-18 11:25:45 +00:00
%%*******************************************************
%% gpp: pgraph partitioning problem.
%%
%% (primal problem) min Tr C*X
%% s.t. Tr(ee'*X) = alpha,
%% diag(X) = e,
%%
%% C = -(diag(B*e)-B).
%%
%% (dual problem) max alpha*y1 + e'*y
%% s.t. y1*e*e^T + diag(y) + Z = C.
%%-------------------------------------------------------
%%
%% [blk,Avec,C,b,X0,y0,Z0,objval,X] = gpp(B,alpha,feas,solve);
%%
%% B: weighted adjacency matrix of a graph with n nodes.
%% alpha: any real number,
%% for alpha in (0,n^2), primal problem is strictly feasible.
%% in {0,n^2}, primal problem is feasible but not strictly.
%% outside [0,n^2], primal problem is infeasible.
%% [default = 1].
%% feas = 1 if want feasible starting point
%% = 0 if otherwise.
%% solve = 0 just to initialize
%% = 1 if want to solve the problem.
%%
%% See graph.m --- generate random adjacency matrix.
%%
%%*****************************************************************
%% SDPT3: version 4.0
%% Copyright (c) 1997 by
%% Kim-Chuan Toh, Michael J. Todd, Reha H. Tutuncu
%% Last Modified: 16 Sep 2004
%%*****************************************************************
function [blk,Avec,C,b,X0,y0,Z0,objval,X] = gpp(B,alpha,feas,solve);
if nargin < 2; alpha = 1; end;
if nargin < 3; feas = 0; end;
if nargin < 4; solve = 0; end;
if ~isreal(B); error('only real B allowed'); end;
n = length(B); e = ones(n,1);
C = -(spdiags(B*e,0,n,n)-B);
b = [alpha; e];
blk{1,1} = 's'; blk{1,2} = n;
A = cell(1,n+1);
A{1} = e*e';
for k = 1:n; A{k+1} = sparse(k,k,1,n,n); end;
Avec = svec(blk,A,ones(size(blk,1),1));
if (feas == 1);
error('feas = 1, this option is not avaliable');
elseif (feas == 0);
[X0,y0,Z0] = infeaspt(blk,Avec,C,b);
end
if (solve)
[obj,X,y,Z] = sqlp(blk,Avec,C,b,[],X0,y0,Z0);
objval = obj(1);
else
objval = []; X = [];
end
%%=======================================================