Dynamic-Calibration/utils/SDPT3-4.0/Examples/chebymat.m

47 lines
1.5 KiB
Mathematica
Raw Permalink Normal View History

2019-12-18 11:25:45 +00:00
%%*********************************************************************
%% chebymat: compute the Chebyshev polynomial of
%% deg m of a matrix B.
%%
%% [blk,Avec,C,b,X0,y0,Z0,objval,p] = chebymat(B,m,feas,solve);
%%
%% B = a square matrix.
%% m = degree of polynomial.
%% feas = 1 if want feasible starting point
%% = 0 if otherwise.
%% solve = 0 just to initialize
%% = 1 if want to solve using sdp.m
%% = 2 if want to solve using sdphlf.m
%%
%% p = Chebyshev polynomial of B in Matlab format.
%%*****************************************************************
%% SDPT3: version 4.0
%% Copyright (c) 1997 by
%% Kim-Chuan Toh, Michael J. Todd, Reha H. Tutuncu
%% Last Modified: 16 Sep 2004
%%*****************************************************************
function [blk,Avec,C,b,X0,y0,Z0,objval,p] = chebymat(B,m,feas,solve);
if (nargin <= 3); solve = 0; end;
if (nargin <= 2); feas = 0; end;
N = length(B);
if (m >= N); error('degree >= size of B'); end;
A = cell(1,m+1);
[V,H,R] = orthbasis(B,m);
A{1} = V{m+1};
for k = 2:m+1; A{k} = V{k-1}; end;
[blk,Avec,C,b,X0,y0,Z0,objval,xx] = norm_min(A,feas,solve);
%%
if (solve)
y = -xx;
h = R(1:m+1,1:m+1) \ [zeros(m,1); 1];
x1 = R(1:m,1:m)*(h(m+1)*y(1:m) + h(1:m));
p = [1; -x1(m:-1:1)];
objval = norm(polyvalm(p,B));
else
objval = []; p = [];
end
%%*********************************************************************