73 lines
3.3 KiB
Mathematica
73 lines
3.3 KiB
Mathematica
|
|
function generate_rb_regressor(path_to_urdf)
|
||
|
|
% ---------------------------------------------------------------------
|
||
|
|
% The function generates regressor for UR10E. It assumes that links of
|
||
|
|
% the robot are rigid bodies. Thus the inverse dynamics can be written
|
||
|
|
% in linear-in-parameters from: tau = Y(q, dq, ddq) pi
|
||
|
|
% ---------------------------------------------------------------------
|
||
|
|
|
||
|
|
% Parse urdf to get robot description
|
||
|
|
ur10 = parse_urdf(path_to_urdf);
|
||
|
|
|
||
|
|
% Create symbolic generilized coordiates, their first and second deriatives
|
||
|
|
q_sym = sym('q%d',[6,1],'real');
|
||
|
|
qd_sym = sym('qd%d',[6,1],'real');
|
||
|
|
q2d_sym = sym('q2d%d',[6,1],'real');
|
||
|
|
|
||
|
|
% ------------------------------------------------------------------------
|
||
|
|
% Getting gradient of energy functions, to derive dynamics
|
||
|
|
% ------------------------------------------------------------------------
|
||
|
|
T_pk = sym(zeros(4,4,6)); % transformation between links
|
||
|
|
w_kk(:,1) = sym(zeros(3,1)); % angular velocity k in frame k
|
||
|
|
v_kk(:,1) = sym(zeros(3,1)); % linear velocity of the origin of frame k in frame k
|
||
|
|
g_kk(:,1) = sym([0,0,9.81])'; % vector of graviatational accelerations in frame k
|
||
|
|
p_kk(:,1) = sym(zeros(3,1)); % origin of frame k in frame k
|
||
|
|
|
||
|
|
for i = 1:6
|
||
|
|
jnt_axs_k = str2num(ur10.robot.joint{i}.axis.Attributes.xyz)';
|
||
|
|
% Transformation from parent link frame p to current joint frame
|
||
|
|
rpy_k = sym(str2num(ur10.robot.joint{i}.origin.Attributes.rpy));
|
||
|
|
R_pj = RPY(rpy_k);
|
||
|
|
R_pj(abs(R_pj)<sqrt(eps)) = sym(0); % to avoid numerical errors
|
||
|
|
p_pj = str2num(ur10.robot.joint{i}.origin.Attributes.xyz)';
|
||
|
|
T_pj = sym([R_pj, p_pj; zeros(1,3), 1]); % to avoid numerical errors
|
||
|
|
% Tranformation from joint frame of the joint that rotaties body k to
|
||
|
|
% link frame. The transformation is pure rotation
|
||
|
|
R_jk = Rot(q_sym(i),sym(jnt_axs_k));
|
||
|
|
p_jk = sym(zeros(3,1));
|
||
|
|
T_jk = [R_jk, p_jk; sym(zeros(1,3)),sym(1)];
|
||
|
|
% Transformation from parent link frame p to current link frame k
|
||
|
|
T_pk(:,:,i) = T_pj*T_jk;
|
||
|
|
z_kk(:,i) = sym(jnt_axs_k);
|
||
|
|
|
||
|
|
w_kk(:,i+1) = T_pk(1:3,1:3,i)'*w_kk(:,i) + sym(jnt_axs_k)*qd_sym(i);
|
||
|
|
v_kk(:,i+1) = T_pk(1:3,1:3,i)'*(v_kk(:,i) + cross(w_kk(:,i),sym(p_pj)));
|
||
|
|
g_kk(:,i+1) = T_pk(1:3,1:3,i)'*g_kk(:,i);
|
||
|
|
p_kk(:,i+1) = T_pk(1:3,1:3,i)'*(p_kk(:,i) + sym(p_pj));
|
||
|
|
|
||
|
|
beta_K(i,:) = [sym(0.5)*w2wtlda(w_kk(:,i+1)),...
|
||
|
|
v_kk(:,i+1)'*vec2skewSymMat(w_kk(:,i+1)),...
|
||
|
|
sym(0.5)*v_kk(:,i+1)'*v_kk(:,i+1)];
|
||
|
|
beta_P(i,:) = [sym(zeros(1,6)), g_kk(:,i+1)',...
|
||
|
|
g_kk(:,i+1)'*p_kk(:,i+1)];
|
||
|
|
end
|
||
|
|
|
||
|
|
|
||
|
|
% ---------------------------------------------------------------------
|
||
|
|
% Dynamic regressor of the full paramters
|
||
|
|
% ---------------------------------------------------------------------
|
||
|
|
beta_Lf = [beta_K(1,:) - beta_P(1,:), beta_K(2,:) - beta_P(2,:),...
|
||
|
|
beta_K(3,:) - beta_P(3,:), beta_K(4,:) - beta_P(4,:),...
|
||
|
|
beta_K(5,:) - beta_P(5,:), beta_K(6,:) - beta_P(6,:)];
|
||
|
|
dbetaLf_dq = jacobian(beta_Lf,q_sym)';
|
||
|
|
dbetaLf_dqd = jacobian(beta_Lf,qd_sym)';
|
||
|
|
tf = sym(zeros(6,60));
|
||
|
|
for i = 1:6
|
||
|
|
tf = tf + diff(dbetaLf_dqd,q_sym(i))*qd_sym(i)+...
|
||
|
|
diff(dbetaLf_dqd,qd_sym(i))*q2d_sym(i);
|
||
|
|
end
|
||
|
|
Y_f = tf - dbetaLf_dq;
|
||
|
|
|
||
|
|
% Generate function from a symbolic expression for the regressor
|
||
|
|
matlabFunction(Y_f,'File','autogen/standard_regressor_UR10E',...
|
||
|
|
'Vars',{q_sym,qd_sym,q2d_sym});
|