Dynamic-Calibration/utils/YALMIP-master/operators/power_internal1.m

89 lines
2.5 KiB
Mathematica
Raw Permalink Normal View History

2019-12-18 11:25:45 +00:00
function varargout = power_internal1(varargin)
%power_internal1
% Used for cases such as 2^x, and is treated as evaluation-based operators
switch class(varargin{1})
case 'double'
varargout{1} = varargin{2}.^varargin{1};
case 'sdpvar'
if isa(varargin{2},'sdpvar')
x = varargin{2};
y = varargin{1};
varargout{1} = exp(y*log(x)); %x^y = exp(log(x^y))
else
if length(varargin{1}) > 1 || size(varargin{2},1) ~= size(varargin{2},2)
error('Inputs must be a scalar and a square matrix. To compute elementwise POWER, use POWER (.^) instead.');
end
x = varargin{2};
y = varargin{1};
if isa(x,'double') && x==1 && length(y)==1
varargout{1} = 1;
else
varargout{1} = InstantiateElementWise(mfilename,varargin{:});
end
end
case 'char'
X = varargin{3};
Y = varargin{4};
F=[];
if Y>=1
operator = struct('convexity','none','monotonicity','increasing','definiteness','positve','model','callback');
elseif Y>=0
operator = struct('convexity','none','monotonicity','decreasing','definiteness','positive','model','callback');
else
% Base is negative, so the power has to be an integer
F = (integer(X));
operator = struct('convexity','none','monotonicity','decreasing','definiteness','none','model','callback');
end
operator.bounds = @bounds_power;
operator.convexhull = @convexhull_power;
operator.derivative = @(x)derivative(x,Y);
if Y >= 0
operator.inverse = @(x,Y)inverse(x,Y);
end
varargout{1} = F;
varargout{2} = operator;
varargout{3} = [X(:);Y(:)];
otherwise
error('SDPVAR/power_internal1 called with CHAR argument?');
end
% This should not be hidden here....
function [L,U] = bounds_power(xL,xU,base)
if base >= 1
L = base^xL;
U = base^xU;
elseif base>= 0
L = base^xU;
U = base^xL;
else
disp('Not implemented yet. Report bug if you need this')
error
end
function x = inverse(y,base)
if y <=0
x = -inf;
else
x = log(y)/log(base);
end
function df = derivative(x,base)
if length(base)~=length(x)
base = base*ones(size(x));
end
f = base.^x;
df = log(base)*f;
function [Ax, Ay, b] = convexhull_power(xL,xU,base)
fL = base^xL;
fU = base^xU;
dfL = log(base)*fL;
dfU = log(base)*fU;
[Ax,Ay,b] = convexhullConvex(xL,xU,fL,fU,dfL,dfU);