44 lines
1.5 KiB
Mathematica
44 lines
1.5 KiB
Mathematica
|
|
function varargout = lambda_min(varargin)
|
||
|
|
% LAMBDA_MIN Returns largest eigenvalue of Hermitian matrix.
|
||
|
|
%
|
||
|
|
% r = LAMBDA_MIN(X)
|
||
|
|
%
|
||
|
|
% See also LAMBDA_MAX
|
||
|
|
|
||
|
|
switch class(varargin{1})
|
||
|
|
|
||
|
|
case 'double' % What is the numerical value of this argument (needed for displays etc)
|
||
|
|
error(nargchk(1,1,nargin));
|
||
|
|
X = varargin{1};
|
||
|
|
[n,m] = size(X);
|
||
|
|
if ~ishermitian(X)
|
||
|
|
error('LAMBDA_MIN can only be applied on Hermitian matrices');
|
||
|
|
else
|
||
|
|
varargout{1} = min(real(eig(X)));
|
||
|
|
end
|
||
|
|
|
||
|
|
case 'sdpvar' % Overloaded operator for SDPVAR objects. Pass on args and save them.
|
||
|
|
error(nargchk(1,1,nargin));
|
||
|
|
X = varargin{1};
|
||
|
|
[n,m] = size(X);
|
||
|
|
if ~ishermitian(X)
|
||
|
|
error('LAMBDA_MIN can only be Hermitian matrices');
|
||
|
|
else
|
||
|
|
varargout{1} = yalmip('define',mfilename,varargin{:});
|
||
|
|
end
|
||
|
|
|
||
|
|
case 'char' % YALMIP sends 'model' when it wants the epigraph or hypograph
|
||
|
|
if isequal(varargin{1},'graph')
|
||
|
|
t = varargin{2}; % Second arg is the extended operator variable
|
||
|
|
X = varargin{3}; % Third arg and above are the args user used when defining t.
|
||
|
|
varargout{1} = (t*eye(size(X,1)) <= X);
|
||
|
|
varargout{2} = struct('convexity','concave','monotonicity','none','definiteness','none','model','graph');
|
||
|
|
varargout{3} = X;
|
||
|
|
else
|
||
|
|
varargout{1} = [];
|
||
|
|
varargout{2} = [];
|
||
|
|
varargout{3} = [];
|
||
|
|
end
|
||
|
|
otherwise
|
||
|
|
end
|