Dynamic-Calibration/utils/YALMIP-master/extras/matrixcoefficients.m

253 lines
7.1 KiB
Mathematica
Raw Permalink Normal View History

2019-12-18 11:25:45 +00:00
function [base,v] = matrixcoefficients(p,x)
%MATRIXCOEFFICIENTS Extends coefficients, beta
% FIX: CURRENTLY UNSTABLE!
if nargout>1 & (max(size(p))>1)
% error('For matrix inputs, only the coefficients can be returned. Request feature if you need this...');
end
% Hack to make sure we get the basis w.r.t all variables and 1
% This has to be fixed soon (to make robust opt. module fast)
p = p + pi + sum(x)*1e-5;
if nargin==1
allvar = depends(p);
xvar = allvar;
x = recover(xvar);
else
xvar = intersect(depends(x),depends(p));
end
% Try to debug this!
p = p(:);
base = [];
v = [];
allvar = depends(p);%(ii));
allvar_recovered = recover(allvar);
t = setdiff(allvar,xvar);
t_recovered = recover(t);
ParametricIndicies = find(ismember(allvar,t));
map = find(~ismember(allvar,t));
for ii = 1:length(p)
pii = p(ii);
[exponent_p,p_base] = getexponentbase(pii,allvar_recovered);
tempbase = parameterizedbase(pii,[],t_recovered,ParametricIndicies,exponent_p,p_base);
[i,j,k] = unique(full(exponent_p(:,map)),'rows');
V = sparse(1:length(k),k,1,length(tempbase),max(k))';
base{ii} = V*tempbase - [pi;repmat(1e-5,length(x),1)];
keepthese = j(1:max(k));
v{ii} = recovermonoms(exponent_p(keepthese,map),x);%recover(xvar));
end
function p_base_parametric = parameterizedbase(p,z, params,ParametricIndicies,exponent_p,p_base)
% Check for linear parameterization
parametric_basis = exponent_p(:,ParametricIndicies);
if all(sum(parametric_basis,2)==0)
p_base_parametric = full(p_base(:));
return
end
if all(sum(parametric_basis,2)<=1)
p_base_parametric = full(p_base(:));
n = length(p_base_parametric);
ii = [];
vars = [];
js = sum(parametric_basis,1);
for i = 1:size(parametric_basis,2)
if js(i)
j = find(parametric_basis(:,i));
ii = [ii j(:)'];
vars = [vars repmat(i,1,js(i))];
end
end
k = setdiff1D(1:n,ii);
if isempty(k)
p_base_parametric = p_base_parametric.*sparse(ii,repmat(1,1,n),params(vars));
else
pp = params(vars); % Must do this, bug in ML 6.1 (x=sparse(1);x([1 1]) gives different result in 6.1 and 7.0!)
temp = sparse([ii k(:)'],repmat(1,1,n),[pp(:)' ones(1,1,length(k))]);
p_base_parametric = p_base_parametric.*temp;
end
else
% Bummer, nonlinear parameterization sucks...
for i = 1:length(p_base)
j = find(exponent_p(i,ParametricIndicies));
if ~isempty(j)
temp = p_base(i);
for k = 1:length(j)
if exponent_p(i,ParametricIndicies(j(k)))==1
temp = temp*params(j(k));
else
temp = temp*params(j(k))^exponent_p(i,ParametricIndicies(j(k)));
end
end
xx{i} = temp;
else
xx{i} = p_base(i);
end
end
p_base_parametric = stackcell(sdpvar(1,1),xx)';
end
%
%
%
%
%
% function [base,v] = coefficients(p,x)
% %COEFFICIENTS Extract coefficients and monomials from polynomials
% %
% % [c,v] = COEFFICIENTS(p,x) extracts the coefficents
% % of a polynomial p(x) = c'*v(x)
% %
% % INPUT
% % p : SDPVAR object
% % x : SDPVAR object
% %
% % OUTPUT
% % c : SDPVAR object
% % v : SDPVAR object
% %
% % EXAMPLE
% % sdpvar x y s t
% % p = x^2+x*y*(s+t)+s^2+t^2; % define p(x,y), parameterized with s and t
% % [c,v] = coefficients(p,[x y]);
% % sdisplay([c v])
% %
% % See also SDPVAR
%
% % Author Johan L<EFBFBD>fberg
% % $Id: matrixcoefficients.m,v 1.4 2006-08-09 12:14:04 joloef Exp $
%
%
% if length(p) > 1%size(p,2) > 1
% error('Coefficents can only be applied to column vectors');
% end
%
% allvar = depends(p);
% if nargin==1
% xvar = allvar;
% x = recover(xvar);
% else
% xvar = depends(x);
% end
%
% pvar = recover(depends(p));
%
% base = [];
% for i = 1:length(p)
% [bi{i},vi{i}] = coefficientsi(p(i),xvar,pvar,allvar);
% end
%
% % Fix the lengths of the basis to use same basis for all elements
% if length(bi)>1
% allvars = [];
% for i = 1:length(bi)
% bivar{i} = getvariables(vi{i});
% if isequal(vi{i}(1),1)
% bivar{i} = [0 bivar{i}];
% end
% allvars = unique([allvars bivar{i}]);
% end
% v = recover(allvars);
% c = zeros(length(p),length(allvars))';
% ci = [];
% cj = [];
% cv = [];
% for i = 1:length(bi)
% index = find(ismember(allvars,bivar{i}));
% ci = [ci index];
% cj = [cj repmat(i,1,length(index))];
% cv = [cv bi{i}'];
% end
% base = sparse(ci,cj,cv);
% else
% base = bi{1};
% v = vi{1};
% end
%
%
% function [base,v] = coefficientsi(p,xvar,pvar,allvar)
%
% % Try to debug this!
% t = setdiff(allvar,xvar);
% [exponent_p,p_base] = getexponentbase(p,pvar);
% ParametricIndicies = find(ismember(allvar,t));
% % FIX : don't define it here, wait until sparser below. Speed!!
% tempbase = parameterizedbase(p,[],recover(t),ParametricIndicies,exponent_p,p_base);
% [i,j,k] = unique(full(exponent_p(:,find(~ismember(allvar,t)))),'rows');
% %V = sparse(max(k),length(tempbase));
% %for i = 1:max(k)
% % V(i,find(k==i)) = 1;
% %end
% V = sparse(1:length(k),k,1,length(tempbase),max(k))';
% base = V*tempbase;
% if nargout == 2
% keepthese = j(1:max(k));
% v = recovermonoms(exponent_p(keepthese,find(~ismember(allvar,t))),recover(xvar));
% end
%
%
% function p_base_parametric = parameterizedbase(p,z, params,ParametricIndicies,exponent_p,p_base)
%
% % Check for linear parameterization
% parametric_basis = exponent_p(:,ParametricIndicies);
% if all(sum(parametric_basis,2)==0)
% p_base_parametric = full(p_base(:));
% return
% end
% if all(sum(parametric_basis,2)<=1)
% p_base_parametric = full(p_base(:));
% n = length(p_base_parametric);
% ii = [];
% vars = [];
% js = sum(parametric_basis,1);
% for i = 1:size(parametric_basis,2)
% if js(i)
% j = find(parametric_basis(:,i));
% ii = [ii j(:)'];
% vars = [vars repmat(i,1,js(i))];
% end
% end
% k = setdiff1D(1:n,ii);
% if isempty(k)
% p_base_parametric = p_base_parametric.*sparse(ii,repmat(1,1,n),params(vars));
% else
% pp = params(vars); % Must do this, bug in ML 6.1 (x=sparse(1);x([1 1]) gives different result in 6.1 and 7.0!)
% p_base_parametric = p_base_parametric.*sparse([ii k(:)'],repmat(1,1,n),[pp(:)' ones(1,1,length(k))]);
% end
% else
% % Bummer, nonlinear parameterization sucks...
% for i = 1:length(p_base)
% j = find(exponent_p(i,ParametricIndicies));
% if ~isempty(j)
% temp = p_base(i);
% for k = 1:length(j)
% if exponent_p(i,ParametricIndicies(j(k)))==1
% temp = temp*params(j(k));
% else
% temp = temp*params(j(k))^exponent_p(i,ParametricIndicies(j(k)));
% end
% end
% xx{i} = temp;
% else
% xx{i} = p_base(i);
% end
% end
% p_base_parametric = stackcell(sdpvar(1,1),xx)';
% end