Dynamic-Calibration/utils/YALMIP-master/@sdpvar/sdpvar.m

811 lines
25 KiB
Mathematica
Raw Permalink Normal View History

2019-12-18 11:25:45 +00:00
function sys = sdpvar(varargin)
%SDPVAR Create symbolic decision variable
%
% You can create a sdpvar variable by:
% X = SDPVAR(n) Symmetric nxn matrix
% X = SDPVAR(n,n) Symmetric nxn matrix
% X = SDPVAR(n,m) Full nxm matrix (n~=m)
%
% Definition of multiple scalars can be simplified
% SDPVAR x y z w
%
% The parametrizations supported are
% X = SDPVAR(n,n,'full') Full nxn matrix
% X = SDPVAR(n,n,'symmetric') Symmetric nxn matrix
% X = SDPVAR(n,n,'diagonal') Diagonal matrix
% X = SDPVAR(n,n,'toeplitz') Symmetric Toeplitz
% X = SDPVAR(n,n,'hankel') Unsymmetric Hankel (zero below the first anti-diagonal)
% X = SDPVAR(n,n,'rhankel') Symmetric Hankel
% X = SDPVAR(n,n,'skew') Skew-symmetric
% X = SDPVAR(n,n,'diagonal') Diagonal
%
% The letters 'sy','f','ha', 't' and 'sk' are searched for in the third argument
% hence sdpvar(n,n,'toeplitz') gives the same result as sdpvar(n,n,'t')
%
% Only square Toeplitz and Hankel matries are supported
%
% A scalar is defined as a 1x1 matrix
%
% Higher-dimensional matrices are also supported. The type flag applies to
% the lowest level slice.
%
% X = SDPVAR(n,n,n,'full') Full nxnxn matrix
%
% In addition to the matrix type, a fourth argument
% can be used to obtain a complex matrix. All the
% matrix types above apply to a complex matrix, and
% in addition a Hermitian type is added
%
% X = SDPVAR(n,n,'hermitian','complex') Complex Hermitian nxn matrix (X=X'=conj(X.'))
%
% The other types are obtained as above
% X = SDPVAR(n,n,'symmetric','complex') Complex symmetric nxn matrix (X=X.')
% X = SDPVAR(n,n,'full','complex') Complex full nxn matrix
% ... and the same for Toeplitz, Hankel and skew-symmetric
%
% See also INTVAR, BINVAR, methods('sdpvar'), SEE
% Turn this on if you want to use factor tracking (i.e, the solver STRUL)
global FACTORTRACKING
FACTORTRACKING = 0;
superiorto('double');
try
superiorto('sgem');
superiorto('gem');
catch
% GEM not in path
end
if nargin==0
sys = sdpvar(1,1);
return
end
if isstruct(varargin{1})
sys = class(varargin{1},'sdpvar');
return
end
% Quick cell-based only for real full/symmetric matrices, so just
% iteratively call sdpvar to generate all cells
if length(varargin{1}) > 1 && nargin <= 4 && nargin > 2
%if (nargin == 4 && isequal('complex',varargin{4})) || (nargin >= 3 && (isequal('toeplitz',varargin{3}) || isequal('hankel',varargin{3})))
if (nargin >= 3 && (isequal('toeplitz',varargin{3}) || isequal('hankel',varargin{3})))
n = varargin{1};
m = varargin{2};
structure = varargin{3};
if nargin == 3
field = 'real';
else
field = varargin{4};
end
for i = 1:length(varargin{1})
sys{i} = sdpvar(n(i),m(i),structure,field);
end
return
end
end
% To speed up dualization, we keep track of primal SDP cones
% [0 0] : Nothing known (cleared in some operator, or none-cone to start with)
% [1 0] : Primal cone
% [i 0] : Hermitian cone
% [1 1] : Primal cone + DOUBLE
% [1 2 x] : Primal cone + SDPVAR
% [-1 1] : -Primal cone + DOUBLE
% [-1 2 x] : -Primal cone + SDPVAR
conicinfo = [0 0];
if ischar(varargin{1})
switch varargin{1}
case 'clear'
disp('Obsolete comand');
return
case 'nvars'
sys = yalmip('nvars');%THIS IS OBSAOLETE AND SHOULD NOT BE USED
return
otherwise
n = length(varargin);
varnames = varargin;
for k = 1:n
varcmd{k}='(1,1)';
lp=findstr(varargin{k},'(');
rp=findstr(varargin{k},')');
if isempty(lp) && isempty(rp)
if ~isvarname(varargin{k})
error('Not a valid variable name.')
end
else
if (~isempty(lp)) && (~isempty(rp))
if min(lp)<max(rp)
varnames{k} = varargin{k}(1:lp-1);
varcmd{k}=varargin{k}(lp:rp);
else
error('Not a valid variable name.')
end
else
error('Not a valid variable name.')
end
end
end
for k = 1:n
if isequal(varnames{k},'i') || isequal(varnames{k},'j')
if length(dbstack) == 1
assignin('caller',varnames{k},eval(['sdpvar' varcmd{k}]));
else
error(['Due to a bug in MATLAB, use ' varnames{k} ' = sdpvar' varcmd{k} ' instead.']);
end
else
assignin('caller',varnames{k},eval(['sdpvar' varcmd{k}]));
end
end
return
end
end
% *************************************************************************
% Maybe new NDSDPVAR syntax
% *************************************************************************
if nargin > 2
if isa(varargin{3},'double') && ~isempty(varargin{3})
sys = ndsdpvar(varargin{:});
return
end
end
% Supported matrix types
% - symm
% - full
% - skew
% - hank
% - toep
switch nargin
case 1 %Bug in MATLAB 5.3!! sdpvar called from horzcat!!!!????
if isempty(varargin{1})
sys = varargin{1};
return
end
if isa(varargin{1},'sdpvar')
sys = varargin{1};
sys.typeflag = 0;
return
end
n = varargin{1};
m = varargin{1};
if sum(n.*m)==0
sys = zeros(n,m);
return
end
if (n==m)
matrix_type = 'symmetric';
nvar = sum(n.*(n+1)/2);
conicinfo = [1 0];
else
matrix_type = 'full';
nvar = sum(n.*m);
conicinfo = [-1 0];
end
case 2
n = varargin{1};
m = varargin{2};
if length(n)~=length(m)
error('The dimensions must have the same lengths')
end
if sum(n.*m)==0
sys = zeros(n,m);
return
end
if (n==m)
matrix_type = 'symmetric';
nvar = sum(n.*(n+1)/2);
conicinfo = [1 0];
else
matrix_type = 'full';
nvar = sum(n.*m);
conicinfo = [-1 0];
end
case {3,4}
n = varargin{1};
m = varargin{2};
if sum(n.*m)==0
sys = zeros(n,m);
return
end
% Check for complex or real
if (nargin == 4)
if isempty(varargin{4})
varargin{4} = 'real';
else
if ~ischar(varargin{4})
help sdpvar
error('Fourth argument should be ''complex'' or ''real''')
end
end
index_cmrl = strmatch(varargin{4},{'real','complex'});
if isempty(index_cmrl)
error('Fourth argument should be ''complex'' or ''real''. See help above')
end
else
if ~ischar(varargin{3})
help sdpvar
error('Third argument should be ''symmetric'', ''full'', ''hermitian'',...See help above')
end
index_cmrl = 1;
end;
if isempty(varargin{3})
if n==m
index_type = 7; %Default symmetric
else
index_type = 4;
end
else
if ~isempty(strmatch(varargin{3},{'complex','real'}))
% User had third argument as complex or real
error(['Third argument should be ''symmetric'', ''full'', ''toeplitz''... Maybe you meant sdpvar(n,n,''full'',''' varargin{3} ''')'])
end
index_type = strmatch(varargin{3},{'toeplitz','hankel','symmetric','full','rhankel','skew','hermitian','diagonal'});
end
if isempty(index_type)
error(['Matrix type "' varargin{3} '" not supported'])
else
switch index_type+100*(index_cmrl-1)
case 1
if n~=m
error('Toeplitz matrix must be square')
else
matrix_type = 'toeplitz';
nvar = n;
end
case 2
if n~=m
error('Hankel matrix must be square')
else
matrix_type = 'hankel';
nvar = n;
end
case 3
if n~=m
error('Symmetric matrix must be square')
else
matrix_type = 'symmetric';
nvar = sum(n.*(n+1)/2);
conicinfo = [1 0];
end
case 4
matrix_type = 'full';
nvar = sum(n.*m);
conicinfo = [-1 0];
if nvar==1
matrix_type = 'symmetric';
conicinfo = [1 0];
end
case 5
if n~=m
error('Hankel matrix must be square')
else
matrix_type = 'rhankel';
nvar = 2*n-1;
end
case 6
if n~=m
error('Skew symmetric matrix must be square')
else
matrix_type = 'skew';
nvar = sum((n.*(n+1)/2)-n);
end
case 7
if n~=m
error('Symmetric matrix must be square')
else
matrix_type = 'symmetric';
nvar = sum(n.*(n+1)/2);
end
case 8
if n~=m
error('Diagonal matrix must be square')
else
matrix_type = 'diagonal';
nvar = n;
end
case 101
if n~=m
error('Toeplitz matrix must be square')
else
matrix_type = 'toeplitz complex';
nvar = 2*n;
end
case 102
if n~=m
error('Hankel matrix must be square')
else
matrix_type = 'hankel complex';
nvar = (2*n);
end
case 103
if n~=m
error('Symmetric matrix must be square')
else
matrix_type = 'symm complex';
nvar = sum(2*n.*(n+1)/2);
end
case 104
matrix_type = 'full complex';
nvar = 2*sum(n.*m);
if nvar==1
matrix_type = 'symm complex';
end
case 105
if n~=m
error('Hankel matrix must be square')
else
matrix_type = 'rhankel complex';
nvar = 2*(2*n-1);
end
case 106
if n~=m
error('Skew symmetric matrix must be square')
else
matrix_type = 'skew complex';
nvar = 2*((n*(n+1)/2)-n);
end
case 107
if n~=m
error('Hermitian matrix must be square')
else
matrix_type = 'hermitian complex';
nvar = sum(n.*(n+1)/2+(n.*(n+1)/2-n));
conicinfo = [sqrt(-1) 0];
end
otherwise
error('Bug! Report!');
end
end
case 5 % Fast version for internal use
sys.basis = varargin{5};
sys.lmi_variables=varargin{4};
sys.dim(1) = varargin{1};
sys.dim(2) = varargin{2};
sys.typeflag = 0;
sys.savedata = [];
sys.extra = [];
sys.extra.expanded = [];
sys.extra.opname = '';
sys.extra.createTime = definecreationtime;
sys.conicinfo = 0;
sys.originalbasis = 'unknown';
if FACTORTRACKING
sys.leftfactors{1} = speye(sys.dim(1));
sys.rightfactors{1} = speye(sys.dim(2));
else
sys.leftfactors = [];
sys.rightfactors = [];
end
sys.midfactors = [];
% Find zero-variables
constants = find(sys.lmi_variables==0);
if ~isempty(constants);
sys.lmi_variables(constants)=[];
sys.basis(:,1) = sys.basis(:,1) + sum(sys.basis(:,1+constants),2);
sys.basis(:,1+constants)=[];
end
if isempty(sys.lmi_variables)
sys = full(reshape(sys.basis(:,1),sys.dim(1),sys.dim(2)));
else
sys = class(sys,'sdpvar');
end
if FACTORTRACKING
sys.midfactors{1} = sys;
end
return
case 6 % Fast version for internal use
sys.basis = varargin{5};
sys.lmi_variables=varargin{4};
sys.dim(1) = varargin{1};
sys.dim(2) = varargin{2};
sys.typeflag = varargin{6};
sys.savedata = [];
sys.extra = [];
sys.extra.expanded = [];
sys.extra.opname = '';
sys.extra.createTime = definecreationtime;
sys.conicinfo = 0;
sys.originalbasis = 'unknown';
if FACTORTRACKING
sys.leftfactors{1} = speye(sys.dim(1));
sys.rightfactors{1} = speye(sys.dim(2));
else
sys.leftfactors = [];
sys.rightfactors = [];
end
sys.midfactors = [];
% Find zero-variables
constants = find(sys.lmi_variables==0);
if ~isempty(constants);
sys.lmi_variables(constants)=[];
sys.basis(:,1) = sys.basis(:,1) + sum(sys.basis(:,1+constants),2);
sys.basis(:,1+constants)=[];
end
if isempty(sys.lmi_variables)
sys = full(reshape(sys.basis(:,1),sys.dim(1),sys.dim(2)));
else
sys = class(sys,'sdpvar');
end
if FACTORTRACKING
sys.midfactors{1} = sys;
end
return
case 7 % Fast version for internal use
sys.basis = varargin{5};
sys.lmi_variables=varargin{4};
sys.dim(1) = varargin{1};
sys.dim(2) = varargin{2};
sys.typeflag = varargin{6};
sys.savedata = [];
sys.extra = varargin{7};
sys.extra.expanded = [];
sys.extra.opname = '';
sys.extra.createTime = '';
sys.conicinfo = varargin{7};
sys.originalbasis = 'unknown';
if FACTORTRACKING
sys.leftfactors{1} = speye(sys.dim(2));
sys.rightfactors{1} = speye(sys.dim(2));
else
sys.leftfactors = [];
sys.rightfactors = [];
end
sys.midfactors = [];
% Find zero-variables
constants = find(sys.lmi_variables==0);
if ~isempty(constants);
sys.lmi_variables(constants)=[];
sys.basis(:,1) = sys.basis(:,1) + sum(sys.basis(:,1+constants),2);
sys.basis(:,1+constants)=[];
end
if isempty(sys.lmi_variables)
sys = full(reshape(sys.basis(:,1),sys.dim(1),sys.dim(2)));
else
sys = class(sys,'sdpvar');
end
if FACTORTRACKING
sys.midfactors{1} = sys;
end
return
case 8
sys = varargin{8};
if isempty(sys.lmi_variables)
sys = full(reshape(sys.basis(:,1),sys.dim(1),sys.dim(2)));
else
sys = class(sys,'sdpvar');
end
return
otherwise
error('Wrong number of arguments in sdpvar creation');
end
if isempty(n) || isempty(m)
error('Size must be integer valued')
end;
if ~((abs((n-ceil(n)))+ abs((m-ceil(m))))==0)
error('Size must be integer valued')
end
[mt,variabletype,hashed_monoms,current_hash] = yalmip('monomtable');
lmi_variables = (1:nvar)+size(mt,1);
for blk = 1:length(n)
switch matrix_type
case 'full'
basis{blk} = [spalloc(n(blk)*m(blk),1,0) speye(n(blk)*m(blk))];%speye(nvar)];
case 'full complex'
basis{blk} = [spalloc(n(blk)*m(blk),1,0) speye(n(blk)*m(blk)) speye(n(blk)*m(blk))*sqrt(-1)];
case 'symmetric'
if n(blk)==1
basis{blk} = sparse([0 1]);
else
% Hrm...fast but completely f*d up
% Resuse old basis
if blk > 1 && n(blk) == n(blk-1)
basis{blk} = basis{blk-1};
else
basis{blk} = lmiBasis(n(blk));
end
end
case 'symm complex'
nvari = 2*n(blk)*(n(blk)+1)/2;
tbasis = spalloc(n(blk)^2,1+nvari,2);
l = 2;
an_empty = spalloc(n(blk),n(blk),2);
for i=1:n(blk)
temp = an_empty;
temp(i,i)=1;
tbasis(:,l)=temp(:);
l = l+1;
for j=i+1:n(blk),
temp = an_empty;
temp(i,j)=1;
temp(j,i)=1;
tbasis(:,l)=temp(:);
l = l+1;
end
end
for i=1:n(blk)
temp = an_empty;
temp(i,i)=sqrt(-1);
tbasis(:,l)=temp(:);
l = l+1;
for j=i+1:n(blk),
temp = an_empty;
temp(i,j)=sqrt(-1);
temp(j,i)=sqrt(-1);
tbasis(:,l)=temp(:);
l = l+1;
end
end
basis{blk} = tbasis;
case 'hermitian complex'
if blk > 1 && any(n(blk)==n(1:blk-1))
j = max((find(n(blk)==n(1:blk-1))));
basis{blk} = basis{j};
else
nvari = n(blk)*(n(blk)+1)/2+(n(blk)*(n(blk)+1)/2-n(blk));
tbasis = spalloc(n(blk)^2,1+nvari,2);
l = 2;
an_empty = spalloc(n(blk),n(blk),2);
Y = reshape(1:n(blk)^2,n(blk),n(blk));
Y = tril(Y);
Y = (Y+Y')-diag(sparse(diag(Y)));
[uu,oo,pp] = unique(Y(:));
BasisReal = sparse(1:n(blk)^2,pp+1,1);
BasisImag = [spalloc(n(blk)^2,n(blk)*(n(blk)-1)/2,n(blk))];
l = 1;
for i=1:n(blk)
for j=i+1:n(blk),
BasisImag(i+(j-1)*n(blk),l)=sqrt(-1);
BasisImag(j+(i-1)*n(blk),l)=-sqrt(-1);
l = l+1;
end
end
tbasis = [BasisReal BasisImag];
basis{blk} = tbasis;
end
case 'skew'
if n(blk)==1
sys = 0;
return
end
if blk > 1 && n(blk) == n(blk-1)
basis{blk} = basis{blk-1};
else
tbasis = spalloc(n(blk)^2,1+(n(blk)*(n(blk)+1)/2)-n(blk),2);
l = 2;
an_empty = spalloc(n(blk),n(blk),2);
for i=1:n(blk)
for j=i+1:n(blk),
temp = an_empty;
temp(i,j)=1;
temp(j,i)=-1;
tbasis(:,l)=temp(:);
l = l+1;
end
end
basis{blk} = tbasis;
end
case 'skew complex'
if n==1
sys = sdpvar(1,1)*sqrt(-1);
return
else
basis = spalloc(n^2,1+nvar,2);
l = 2;
an_empty = spalloc(n,n,2);
for i=1:n
for j=i+1:n,
temp = an_empty;
temp(i,j)=1;
temp(j,i)=-1;
basis(:,l)=temp(:);
l = l+1;
end
end
for i=1:n
for j=i+1:n,
temp = an_empty;
temp(i,j)=sqrt(-1);
temp(j,i)=-sqrt(-1);
basis(:,l)=temp(:);
l = l+1;
end
end
end
case 'toeplitz'
basis = [spalloc(n(blk)*1,1,0) speye(n(blk)*1)];
% Notice, complex Toeplitz not Hermitian
case 'toeplitz complex'
basis = spalloc(n^2,1+nvar,2);
an_empty = spalloc(n,1,1);
for i=1:n,
v = an_empty;
v(i)=1;
temp = sparse(toeplitz(v));
basis(:,i+1) = temp(:);
end
for i=1:n,
v = an_empty;
v(i)=sqrt(-1);
temp = sparse(toeplitz(v));
basis(:,n+i+1) = temp(:);
end
case 'hankel'
% Create a vector. We will hankelize it later
basis = [spalloc(n(blk)*1,1,0) speye(n(blk)*1)];
case 'diagonal'
j = 2:n+1;
i = 1:n+1:n^2;
basis = sparse(i,j,ones(length(i),1),n^2,1+n);
case 'hankel complex'
basis = spalloc(n^2,1+nvar,2);
an_empty = spalloc(n,1,1);
for i=1:n,
v = an_empty;
v(i)=1;
temp = sparse(hankel(v));
basis(:,i+1) = temp(:);
end
for i=1:n,
v = an_empty;
v(i)=sqrt(-1);
temp = sparse(hankel(v));
basis(:,n+i+1) = temp(:);
end
case 'rhankel'
basis = spalloc(n^2,1+nvar,2);
an_empty = spalloc(2*n-1,1,1);
for i=1:nvar,
v = an_empty;
v(i)=1;
temp = sparse(hankel(v(1:n),[v(n);v(n+1:2*n-1)]));
basis(:,i+1) = temp(:);
end
case 'rhankel complex'
basis = spalloc(n^2,1+nvar,2);
an_empty = spalloc(2*n-1,1,1);
for i=1:nvar/2,
v = an_empty;
v(i)=1;
temp = sparse(hankel(v(1:n),[v(n);v(n+1:2*n-1)]));
basis(:,i+1) = temp(:);
end
for i=1:nvar/2,
v = an_empty;
v(i)=sqrt(-1);
temp = sparse(hankel(v(1:n),[v(n);v(n+1:2*n-1)]));
basis(:,nvar/2+i+1) = temp(:);
end
otherwise
error('Bug! Report')
end
end
appendYALMIPvariables(lmi_variables,mt,variabletype,hashed_monoms,current_hash);
% Create an object
if isa(basis,'cell')
top = 1;
for blk = 1:length(n)
sys{blk}.basis=basis{blk};
nn = size(sys{blk}.basis,2)-1;
sys{blk}.lmi_variables = lmi_variables(top:top+nn-1);
top = top + nn;
sys{blk}.dim(1) = n(blk);
sys{blk}.dim(2) = m(blk);
sys{blk}.typeflag = 0;
sys{blk}.savedata = [];
sys{blk}.extra = [];
sys{blk}.extra.expanded = [];
sys{blk}.extra.opname = '';
sys{blk}.extra.createTime = definecreationtime;
sys{blk}.conicinfo = conicinfo;
sys{blk}.originalbasis = matrix_type;
if FACTORTRACKING
sys{blk}.leftfactors{1} = speye(n(blk));
sys{blk}.rightfactors{1} = speye(m(blk));
else
sys{blk}.leftfactors = [];
sys{blk}.rightfactors = [];
end
sys{blk}.midfactors = [];
sys{blk} = class(sys{blk},'sdpvar');
if FACTORTRACKING
sys{blk}.midfactors{1} = sys{blk};
end
end
if length(n)==1
sys = sys{1};
end
else
sys.basis=basis;
sys.lmi_variables = lmi_variables;
sys.dim(1) = n;
sys.dim(2) = m;
sys.typeflag = 0;
sys.savedata = [];
sys.extra = [];
sys.extra.expanded = [];
sys.extra.opname = '';
sys.extra.createTime = definecreationtime;
sys.conicinfo = conicinfo;
sys.originalbasis = matrix_type;
if FACTORTRACKING
sys.leftfactors{1} = speye(n);
sys.rightfactors{1} = speye(m);
else
sys.leftfactors = [];
sys.rightfactors = [];
end
sys.midfactors = [];
sys = class(sys,'sdpvar');
if FACTORTRACKING
sys.midfactors{1} = sys;
end
if isequal(matrix_type,'hankel')
% To speed up generation, we have just created a vector, and now
% hankelize it
sys.dim(2) = 1;
sys = hankel(sys);
if FACTORTRACKING
sys.leftfactors{1} = eye(sys.dim(1));
sys.midfactors{1} = sys;
sys.rightfactors{1} = eye(sys.dim(1));
end
elseif isequal(matrix_type,'toeplitz')
sys.dim(2) = 1;
sys = toeplitz(sys);
if FACTORTRACKING
sys.leftfactors{1} = eye(sys.dim(1));
sys.midfactors{1} = sys;
sys.rightfactors{1} = eye(sys.dim(1));
end
end
end