51 lines
1.4 KiB
Mathematica
51 lines
1.4 KiB
Mathematica
|
|
function issym=ishermitian(X)
|
||
|
|
%ISHERMITIAN Check if variable is Hermitian
|
||
|
|
|
||
|
|
n = X.dim(1);
|
||
|
|
m = X.dim(2);
|
||
|
|
issym = 0;
|
||
|
|
if (n==m)
|
||
|
|
|
||
|
|
if isequal(X.conicinfo,[1 0])
|
||
|
|
issym = 1;
|
||
|
|
return
|
||
|
|
elseif isequal(X.conicinfo,[-1 0])
|
||
|
|
issym = 0;
|
||
|
|
end
|
||
|
|
|
||
|
|
if isa(X.basis,'lazybasis')
|
||
|
|
issym = 1;
|
||
|
|
else
|
||
|
|
|
||
|
|
% What are the linear indicies to the transposed matrices
|
||
|
|
%ind = reshape(reshape(1:n^2,n,n)',n^2,1);
|
||
|
|
[i,j,k] = find(X.basis);
|
||
|
|
col = ceil(i/X.dim(1));
|
||
|
|
row = i - (col-1)*X.dim(1);
|
||
|
|
|
||
|
|
% Original linear indicies
|
||
|
|
% row + (col-1)*X.dim(1)
|
||
|
|
% Transposed linear indicies
|
||
|
|
inew = col + (row-1)*X.dim(1);
|
||
|
|
tranposedBasis = sparse(inew,j,k,size(X.basis,1),size(X.basis,2));
|
||
|
|
|
||
|
|
if ~isreal(X.basis)
|
||
|
|
residual = mid(X.basis-conj(tranposedBasis));
|
||
|
|
%residual = mid(X.basis-conj(X.basis(ind,:)));
|
||
|
|
else
|
||
|
|
residual = mid(X.basis-tranposedBasis);
|
||
|
|
% Optimized for speed on huge sparse cases
|
||
|
|
%[i,j,k] = find(X.basis);
|
||
|
|
%basisTransposed = sparse(ind(i),j,k);
|
||
|
|
%residual = mid(X.basis-basisTransposed);
|
||
|
|
%%residual = mid(X.basis-X.basis(ind,:));
|
||
|
|
end
|
||
|
|
|
||
|
|
if nnz(residual)>0
|
||
|
|
issym = norm(residual,1)<1e-10;
|
||
|
|
else
|
||
|
|
issym = 1;
|
||
|
|
end
|
||
|
|
end
|
||
|
|
end
|