BIRDy/Utils/SymbolicModelData/RobotDescriptionFiles/TX40_uncoupled.m

53 lines
2.4 KiB
Matlab

function [robot] = TX40_uncoupled(options, varargin)
[robot] = TX40(options);
robot.name = 'TX40_uncoupled';
if isfield(robot,'symbolicParameters')
robot.symbolicParameters.Xhi = robot.symbolicParameters.Xhi(1:end-2);
robot.symbolicParameters.Xhi_aug = robot.symbolicParameters.Xhi_aug(1:end-2);
end
robot.numericalParameters.Xhi = robot.numericalParameters.Xhi(1:end-2);
robot.numericalParameters.numParam(end) = robot.numericalParameters.numParam(end)-2;
switch options.noiseLevel
case 'oldNoise'
robot.numericalParameters.sd_q = [0.057e-3; 0.057e-3; 0.122e-3; 0.114e-3; 0.122e-3; 0.172e-3].*pi/180; % Noise standard deviation
robot.numericalParameters.sd_tau = 5e-2*ones(robot.nbDOF,1); % Noise standard deviation
case 'lowPositionNoise'
% Standard
robot.numericalParameters.sd_q = [1e-4; 1e-4; 1e-4; 1e-4; 1e-4; 1e-4].*pi/180; % Noise standard deviation
robot.numericalParameters.sd_tau = 5*[1e-2; 1e-2; 1e-2; 1e-2; 1e-2; 1e-2]; % Noise standard deviation
case 'standardNoise'
% Standard
robot.numericalParameters.sd_q = [1e-3; 1e-3; 1e-3; 1e-3; 1e-3; 1e-3].*pi/180; % Noise standard deviation
robot.numericalParameters.sd_tau = 5*[1e-2; 1e-2; 1e-2; 1e-2; 1e-2; 1e-2]; % Noise standard deviation
case 'highTorqueNoise'
% High torque noise
robot.numericalParameters.sd_q = [1e-3; 1e-3; 1e-3; 1e-3; 1e-3; 1e-3].*pi/180; % Noise standard deviation
robot.numericalParameters.sd_tau = 10*[1e-2; 1e-2; 1e-2; 1e-2; 1e-2; 1e-2]; % Noise standard deviation
case 'highPositionNoise'
% High position noise
robot.numericalParameters.sd_q = 10*[1e-3; 1e-3; 1e-3; 1e-3; 1e-3; 1e-3].*pi/180; % Noise standard deviation
robot.numericalParameters.sd_tau = 5*[1e-2; 1e-2; 1e-2; 1e-2; 1e-2; 1e-2]; % Noise standard deviation
case 'highPositionTorqueNoise'
% High torque and position noise
robot.numericalParameters.sd_q = 10*[1e-3; 1e-3; 1e-3; 1e-3; 1e-3; 1e-3].*pi/180; % Noise standard deviation
robot.numericalParameters.sd_tau = 10*[1e-2; 1e-2; 1e-2; 1e-2; 1e-2; 1e-2]; % Noise standard deviation
otherwise
% Standard
robot.numericalParameters.sd_q = [1e-3; 1e-3; 1e-3; 1e-3; 1e-3; 1e-3].*pi/180; % Noise standard deviation
robot.numericalParameters.sd_tau = 5*[1e-2; 1e-2; 1e-2; 1e-2; 1e-2; 1e-2]; % Noise standard deviation
end
end