60 lines
4.2 KiB
Matlab
60 lines
4.2 KiB
Matlab
function results_CLIE = run_CLIE(robot, benchmarkSettings, experimentDataStruct, optionsCLIE, progressBar)
|
|
|
|
% Authors: Quentin Leboutet, Julien Roux, Alexandre Janot and Gordon Cheng
|
|
|
|
%% Define result data structure:
|
|
|
|
if benchmarkSettings.displayProgression == true
|
|
waitbar(0, progressBar, sprintf('CLIE: First Iteration...'));
|
|
end
|
|
|
|
results_CLIE.benchmarkSettings = benchmarkSettings; % Data structure containing the benchmark settings
|
|
results_CLIE.options = optionsCLIE; % Options that are specific to the identification method.
|
|
results_CLIE.Betas = zeros(benchmarkSettings.numberOfInitialEstimates, benchmarkSettings.numberOfExperimentsPerInitialPoint, numel(benchmarkSettings.Beta_obj)); % Identified parameters
|
|
results_CLIE.times = zeros(benchmarkSettings.numberOfInitialEstimates, benchmarkSettings.numberOfExperimentsPerInitialPoint); % Computation times
|
|
results_CLIE.flag = zeros(benchmarkSettings.numberOfInitialEstimates, benchmarkSettings.numberOfExperimentsPerInitialPoint); % Termination flag of the identification code
|
|
results_CLIE.iterations = zeros(benchmarkSettings.numberOfInitialEstimates, benchmarkSettings.numberOfExperimentsPerInitialPoint); % Number of iterations
|
|
results_CLIE.lambdas_upper = zeros(benchmarkSettings.numberOfInitialEstimates, benchmarkSettings.numberOfExperimentsPerInitialPoint, robot.paramVectorSize);
|
|
results_CLIE.lambdas_lower = zeros(benchmarkSettings.numberOfInitialEstimates, benchmarkSettings.numberOfExperimentsPerInitialPoint, robot.paramVectorSize);
|
|
% results_CLIE.jacobians = zeros(benchmarkSettings.numberOfInitialEstimates, benchmarkSettings.numberOfExperimentsPerInitialPoint, (benchmarkSettings.nbSamples-2*benchmarkSettings.samplingBorder)*robot.nbDOF/benchmarkSettings.decimRate, robot.paramVectorSize);
|
|
results_CLIE.jacobian_sigma_upper = zeros(benchmarkSettings.numberOfInitialEstimates); % Upper singular value of the Jacobian matrix.
|
|
results_CLIE.jacobian_sigma_lower = zeros(benchmarkSettings.numberOfInitialEstimates); % Lower singular value of the Jacobian matrix.
|
|
|
|
%% Run the identification code:
|
|
|
|
for initEst = 1:benchmarkSettings.numberOfInitialEstimates % For each set of initial parameters
|
|
|
|
Beta_0 = benchmarkSettings.Initial_Beta(:,initEst);
|
|
|
|
for expNb = 1:benchmarkSettings.numberOfExperimentsPerInitialPoint % For each trajectory noise
|
|
tic
|
|
[Beta_CLIE, fval, output, exitflag, lambda, jacobian] = CLIE_identification(robot, benchmarkSettings, experimentDataStruct, expNb, Beta_0, optionsCLIE);
|
|
results_CLIE.times(initEst, expNb)=toc;
|
|
|
|
if optionsCLIE.verbose == true
|
|
fprintf('CLIE status: initial estimate %d, experiment %d \n', initEst, expNb);
|
|
fprintf('CLIE status: initial parameter error = %d\n', norm(Beta_0-benchmarkSettings.Beta_obj));
|
|
fprintf('CLIE status: estimated parameter error = %d\n', norm(Beta_CLIE-benchmarkSettings.Beta_obj));
|
|
disp('---------------------------------------------')
|
|
end
|
|
|
|
if benchmarkSettings.displayProgression == true
|
|
waitbar(((initEst-1)*benchmarkSettings.numberOfExperimentsPerInitialPoint+expNb)/((benchmarkSettings.numberOfInitialEstimates-1)*benchmarkSettings.numberOfExperimentsPerInitialPoint+benchmarkSettings.numberOfExperimentsPerInitialPoint), progressBar, sprintf('CLIE: %d%% done...', floor(100*((initEst-1)*benchmarkSettings.numberOfExperimentsPerInitialPoint+expNb)/((benchmarkSettings.numberOfInitialEstimates-1)*benchmarkSettings.numberOfExperimentsPerInitialPoint+benchmarkSettings.numberOfExperimentsPerInitialPoint))));
|
|
end
|
|
results_CLIE.flag(initEst,expNb)=exitflag;
|
|
results_CLIE.Betas(initEst,expNb,:)=Beta_CLIE;
|
|
results_CLIE.eps(initEst, expNb)=norm(Beta_CLIE-benchmarkSettings.Beta_obj);
|
|
results_CLIE.iteration(initEst,expNb)=output;
|
|
results_CLIE.lambdas_upper(initEst, expNb, :) = lambda.upper;
|
|
results_CLIE.lambdas_lower(initEst, expNb, :) = lambda.lower;
|
|
% results_CLIE.jacobians(initEst, expNb, :, :) = jacobian; % Requires too much memory
|
|
|
|
s = svd(jacobian);
|
|
results_CLIE.jacobian_sigma_upper(initEst, expNb) = max(s);
|
|
results_CLIE.jacobian_sigma_lower(initEst, expNb) = min(s);
|
|
|
|
end
|
|
end
|
|
end
|
|
|