function results_ANN = run_ANN(robot, benchmarkSettings, experimentDataStruct, optionsANN, progressBar) % Authors: Quentin Leboutet, Julien Roux, Alexandre Janot and Gordon Cheng %% Define result data structure: if benchmarkSettings.displayProgression == true waitbar(0, progressBar, sprintf('ANN: First Iteration...')); end results_ANN.benchmarkSettings = benchmarkSettings; % Data structure containing the benchmark settings results_ANN.options = optionsANN; % Options that are specific to the identification method. results_ANN.Betas = zeros(benchmarkSettings.numberOfInitialEstimates, benchmarkSettings.numberOfExperimentsPerInitialPoint, numel(benchmarkSettings.Beta_obj)); % Identified parameters results_ANN.times = zeros(benchmarkSettings.numberOfInitialEstimates, benchmarkSettings.numberOfExperimentsPerInitialPoint); % Computation times %% Run the identification code: for initEst = 1:benchmarkSettings.numberOfInitialEstimates % For each set of initial parameters Beta_0 = benchmarkSettings.Initial_Beta(:,initEst); for expNb = 1:benchmarkSettings.numberOfExperimentsPerInitialPoint % For each trajectory noise tic [Beta_ANN] = ANN_identification(robot, experimentDataStruct, expNb, benchmarkSettings, Beta_0, optionsANN); results_ANN.times(initEst, expNb)=toc; if benchmarkSettings.displayProgression == true waitbar(((initEst-1)*benchmarkSettings.numberOfExperimentsPerInitialPoint+expNb)/((benchmarkSettings.numberOfInitialEstimates-1)*benchmarkSettings.numberOfExperimentsPerInitialPoint+benchmarkSettings.numberOfExperimentsPerInitialPoint), progressBar, sprintf('Adaline NN: %d%% done...', floor(100*((initEst-1)*benchmarkSettings.numberOfExperimentsPerInitialPoint+expNb)/((benchmarkSettings.numberOfInitialEstimates-1)*benchmarkSettings.numberOfExperimentsPerInitialPoint+benchmarkSettings.numberOfExperimentsPerInitialPoint)))); end if optionsANN.verbose == true fprintf('ANN status: initial estimate %d, experiment %d \n', initEst, expNb ); fprintf('ANN status: initial parameter error = %d\n', norm(Beta_0-benchmarkSettings.Beta_obj)); fprintf('ANN status: estimated parameter error = %d\n', norm(Beta_ANN-benchmarkSettings.Beta_obj)); disp('---------------------------------------------') end results_ANN.Betas(initEst,expNb,:) = Beta_ANN; end end end