function results_KF = run_Kalman(robot, benchmarkSettings, experimentDataStruct, optionsKF, progressBar) % Authors: Quentin Leboutet, Julien Roux, Alexandre Janot and Gordon Cheng %% Define result data structure: if benchmarkSettings.displayProgression == true waitbar(0, progressBar, sprintf('Kalman Filter (%s): First Iteration...', optionsKF.type)); end results_KF.benchmarkSettings = benchmarkSettings; % Data structure containing the benchmark settings results_KF.options = optionsKF; % Options that are specific to the identification method. results_KF.Betas = zeros(benchmarkSettings.numberOfInitialEstimates, benchmarkSettings.numberOfExperimentsPerInitialPoint, robot.paramVectorSize); % Identified parameters results_KF.flag = zeros(benchmarkSettings.numberOfInitialEstimates, benchmarkSettings.numberOfExperimentsPerInitialPoint); % Termination flag of the identification code results_KF.times = zeros(benchmarkSettings.numberOfInitialEstimates, benchmarkSettings.numberOfExperimentsPerInitialPoint); % Computation times if optionsKF.getIterationData == true results_KF.Betas_iteration = zeros(robot.paramVectorSize, ceil(benchmarkSettings.nbSamples/optionsKF.samplingFactor), benchmarkSettings.numberOfInitialEstimates*benchmarkSettings.numberOfExperimentsPerInitialPoint); % Identified parameters for each step of the iterative process results_KF.Covariance_iteration = zeros(robot.paramVectorSize+2*robot.nbDOF, robot.paramVectorSize+2*robot.nbDOF, ceil(benchmarkSettings.nbSamples/optionsKF.samplingFactor), benchmarkSettings.numberOfInitialEstimates*benchmarkSettings.numberOfExperimentsPerInitialPoint); % Identified parameters covatriance for each step of the iterative process results_KF.noiseAnneal = zeros(benchmarkSettings.nbSamples, ceil(benchmarkSettings.numberOfInitialEstimates*benchmarkSettings.numberOfExperimentsPerInitialPoint/optionsKF.samplingFactor)); % Process noise annealing parameter end %% Run the identification code: for initEst = 1:benchmarkSettings.numberOfInitialEstimates % For each set of initial parameters Beta_0 = benchmarkSettings.Initial_Beta(:,initEst); for expNb = 1:benchmarkSettings.numberOfExperimentsPerInitialPoint % For each trajectory noise tic [Beta_KF, State_KF, Covariance_KF, noiseAnneal_KF, flag_KF] = KF_identification(robot, benchmarkSettings, experimentDataStruct, expNb, Beta_0, optionsKF); results_KF.times(initEst, expNb)=toc; if optionsKF.verbose == true fprintf('%s status: initial estimate %d, experiment %d \n', optionsKF.type, initEst, expNb ); fprintf('%s status: initial parameter error = %d\n', optionsKF.type, norm(Beta_0-benchmarkSettings.Beta_obj)); fprintf('%s status: estimated parameter error = %d\n', optionsKF.type, norm(Beta_KF-benchmarkSettings.Beta_obj)); disp('---------------------------------------------') end if benchmarkSettings.displayProgression == true waitbar(((initEst-1)*benchmarkSettings.numberOfExperimentsPerInitialPoint+expNb)/((benchmarkSettings.numberOfInitialEstimates-1)*benchmarkSettings.numberOfExperimentsPerInitialPoint+benchmarkSettings.numberOfExperimentsPerInitialPoint), progressBar, sprintf('Kalman Filter: %d%% done...', floor(100*((initEst-1)*benchmarkSettings.numberOfExperimentsPerInitialPoint+expNb)/((benchmarkSettings.numberOfInitialEstimates-1)*benchmarkSettings.numberOfExperimentsPerInitialPoint+benchmarkSettings.numberOfExperimentsPerInitialPoint)))); end results_KF.Betas(initEst,expNb,:)=Beta_KF; results_KF.flag(initEst,expNb)=flag_KF; if optionsKF.getIterationData == true results_KF.Betas_iteration(:,:,benchmarkSettings.numberOfExperimentsPerInitialPoint*(initEst-1)+expNb)=State_KF(:,2*robot.nbDOF+1:end)'; % Store only one column out of 10 results_KF.Covariance_iteration(:,:,:,benchmarkSettings.numberOfExperimentsPerInitialPoint*(initEst-1)+expNb)=Covariance_KF; % Store only one column out of 10 results_KF.noiseAnneal(:, benchmarkSettings.numberOfExperimentsPerInitialPoint*(initEst-1)+expNb)=noiseAnneal_KF; end end end end