function results_HTRNN = run_HTRNN(robot, benchmarkSettings, experimentDataStruct, optionsHTRNN, progressBar) % Authors: Quentin Leboutet, Julien Roux, Alexandre Janot and Gordon Cheng %% Define result data structure: if benchmarkSettings.displayProgression == true waitbar(0, progressBar, sprintf('HTRNN: First Iteration...')); end results_HTRNN.benchmarkSettings = benchmarkSettings; % Data structure containing the benchmark settings results_HTRNN.options = optionsHTRNN; % Options that are specific to the identification method. results_HTRNN.Betas = zeros(benchmarkSettings.numberOfInitialEstimates, benchmarkSettings.numberOfExperimentsPerInitialPoint, numel(benchmarkSettings.Beta_obj)); % Identified parameters results_HTRNN.times = zeros(benchmarkSettings.numberOfInitialEstimates, benchmarkSettings.numberOfExperimentsPerInitialPoint); % Computation times results_HTRNN.iterations = zeros(benchmarkSettings.numberOfInitialEstimates, benchmarkSettings.numberOfExperimentsPerInitialPoint); % Number of iterations %% Run the identification code: for initEst = 1:benchmarkSettings.numberOfInitialEstimates % For each set of initial parameters Beta_0 = benchmarkSettings.Initial_Beta(:,initEst); for expNb = 1:benchmarkSettings.numberOfExperimentsPerInitialPoint % For each trajectory noise tic [Beta_HTRNN, it_HTRNN] = HTRNN_identification(robot, experimentDataStruct, expNb, benchmarkSettings, Beta_0, optionsHTRNN); results_HTRNN.times(initEst, expNb)=toc; if benchmarkSettings.displayProgression == true waitbar(((initEst-1)*benchmarkSettings.numberOfExperimentsPerInitialPoint+expNb)/((benchmarkSettings.numberOfInitialEstimates-1)*benchmarkSettings.numberOfExperimentsPerInitialPoint+benchmarkSettings.numberOfExperimentsPerInitialPoint), progressBar, sprintf('Hopfield NN: %d%% done...', floor(100*((initEst-1)*benchmarkSettings.numberOfExperimentsPerInitialPoint+expNb)/((benchmarkSettings.numberOfInitialEstimates-1)*benchmarkSettings.numberOfExperimentsPerInitialPoint+benchmarkSettings.numberOfExperimentsPerInitialPoint)))); end if optionsHTRNN.verbose == true fprintf('HTRNN status: initial estimate %d, experiment %d \n', initEst, expNb ); fprintf('HTRNN status: initial parameter error = %d\n', norm(Beta_0-benchmarkSettings.Beta_obj)); fprintf('HTRNN status: estimated parameter error = %d\n', norm(Beta_HTRNN-benchmarkSettings.Beta_obj)); disp('---------------------------------------------') end results_HTRNN.Betas(initEst,expNb,:)=Beta_HTRNN; results_HTRNN.iteration(initEst,expNb)=it_HTRNN; end end end