function results_CLOE = run_CLOE(robot, benchmarkSettings, experimentDataStruct, optionsCLOE, progressBar) %% Define result data structure: if benchmarkSettings.displayProgression == true waitbar(0, progressBar, sprintf('CLOE: First Iteration...')); end results_CLOE.benchmarkSettings = benchmarkSettings; % Data structure containing the benchmark settings results_CLOE.options = optionsCLOE; % Options that are specific to the identification method. results_CLOE.Betas = zeros(benchmarkSettings.numberOfInitialEstimates, benchmarkSettings.numberOfExperimentsPerInitialPoint, numel(benchmarkSettings.Beta_obj)); % Identified parameters results_CLOE.times = zeros(benchmarkSettings.numberOfInitialEstimates, benchmarkSettings.numberOfExperimentsPerInitialPoint); % Computation times results_CLOE.flag = zeros(benchmarkSettings.numberOfInitialEstimates, benchmarkSettings.numberOfExperimentsPerInitialPoint); % Termination flag of the identification code results_CLOE.iterations = zeros(benchmarkSettings.numberOfInitialEstimates, benchmarkSettings.numberOfExperimentsPerInitialPoint); % Number of iterations results_CLOE.lambdas_upper = zeros(benchmarkSettings.numberOfInitialEstimates, benchmarkSettings.numberOfExperimentsPerInitialPoint, robot.paramVectorSize); results_CLOE.lambdas_lower = zeros(benchmarkSettings.numberOfInitialEstimates, benchmarkSettings.numberOfExperimentsPerInitialPoint, robot.paramVectorSize); % results_CLOE.jacobians = zeros(benchmarkSettings.numberOfInitialEstimates, benchmarkSettings.numberOfExperimentsPerInitialPoint, (benchmarkSettings.nbSamples-2*benchmarkSettings.samplingBorder)*robot.nbDOF/benchmarkSettings.decimRate, robot.paramVectorSize); results_CLOE.jacobian_sigma_upper = zeros(benchmarkSettings.numberOfInitialEstimates); % Upper singular value of the Jacobian matrix. results_CLOE.jacobian_sigma_lower = zeros(benchmarkSettings.numberOfInitialEstimates); % Lower singular value of the Jacobian matrix. %% Run the identification code: for initEst = 1:benchmarkSettings.numberOfInitialEstimates % For each set of initial parameters Beta_0 = benchmarkSettings.Initial_Beta(:,initEst); for expNb = 1:benchmarkSettings.numberOfExperimentsPerInitialPoint % For each trajectory noise tic [Beta_CLOE, fval, output, exitflag, lambda, jacobian] = CLOE_identification(robot, benchmarkSettings, experimentDataStruct, expNb, Beta_0, optionsCLOE); results_CLOE.times(initEst, expNb)=toc; if optionsCLOE.verbose == true fprintf('CLOE status: initial estimate %d, experiment %d \n', initEst, expNb); fprintf('CLOE status: initial parameter error = %d\n', norm(Beta_0-benchmarkSettings.Beta_obj)); fprintf('CLOE status: estimated parameter error = %d\n', norm(Beta_CLOE-benchmarkSettings.Beta_obj)); disp('---------------------------------------------') end if benchmarkSettings.displayProgression == true waitbar(((initEst-1)*benchmarkSettings.numberOfExperimentsPerInitialPoint+expNb)/((benchmarkSettings.numberOfInitialEstimates-1)*benchmarkSettings.numberOfExperimentsPerInitialPoint+benchmarkSettings.numberOfExperimentsPerInitialPoint), progressBar, sprintf('CLOE: %d%% done...', floor(100*((initEst-1)*benchmarkSettings.numberOfExperimentsPerInitialPoint+expNb)/((benchmarkSettings.numberOfInitialEstimates-1)*benchmarkSettings.numberOfExperimentsPerInitialPoint+benchmarkSettings.numberOfExperimentsPerInitialPoint)))); end results_CLOE.flag(initEst,expNb)=exitflag; results_CLOE.Betas(initEst,expNb,:)=Beta_CLOE; results_CLOE.eps(initEst, expNb)=norm(Beta_CLOE-benchmarkSettings.Beta_obj); results_CLOE.iteration(initEst,expNb)=output; results_CLOE.lambdas_upper(initEst, expNb, :) = lambda.upper; results_CLOE.lambdas_lower(initEst, expNb, :) = lambda.lower; % results_CLOE.jacobians(initEst, expNb, :, :) = jacobian; % Requires too much memory s = svd(jacobian); results_CLOE.jacobian_sigma_upper(initEst, expNb) = max(s); results_CLOE.jacobian_sigma_lower(initEst, expNb) = min(s); end end end