BIRDy/Benchmark/Robot_Identification_Algori.../ML/run_ML.m

43 lines
2.4 KiB
Mathematica
Raw Permalink Normal View History

2021-04-29 09:42:38 +00:00
function results_ML = run_ML(robot, benchmarkSettings, experimentDataStruct, optionsML, progressBar)
% Authors: Quentin Leboutet, Julien Roux, Alexandre Janot and Gordon Cheng
%% Define result data structure:
if benchmarkSettings.displayProgression == true
waitbar(0, progressBar, sprintf('IDIM-LS: First Iteration...'));
end
results_ML.benchmarkSettings = benchmarkSettings; % Data structure containing the benchmark settings
results_ML.options = optionsML; % Options that are specific to the identification method.
results_ML.Betas = zeros(benchmarkSettings.numberOfInitialEstimates, benchmarkSettings.numberOfExperimentsPerInitialPoint, numel(benchmarkSettings.Beta_obj)); % Identified parameters
results_ML.times = zeros(benchmarkSettings.numberOfInitialEstimates, benchmarkSettings.numberOfExperimentsPerInitialPoint); % Computation times
%% Run the identification code:
for initEst = 1:benchmarkSettings.numberOfInitialEstimates % For each set of initial parameters
Beta_0 = benchmarkSettings.Initial_Beta(:,initEst);
for expNb = 1:benchmarkSettings.numberOfExperimentsPerInitialPoint % For each trajectory noise
tic
[Beta_ML] = ML_identification(robot, experimentDataStruct, expNb, benchmarkSettings, Beta_0, optionsML);
results_ML.times(initEst, expNb) = toc;
if benchmarkSettings.displayProgression == true
waitbar(((initEst-1)*benchmarkSettings.numberOfExperimentsPerInitialPoint+expNb)/((benchmarkSettings.numberOfInitialEstimates-1)*benchmarkSettings.numberOfExperimentsPerInitialPoint+benchmarkSettings.numberOfExperimentsPerInitialPoint), progressBar, sprintf('IDIM-LS: %d%% done...', floor(100*((initEst-1)*benchmarkSettings.numberOfExperimentsPerInitialPoint+expNb)/((benchmarkSettings.numberOfInitialEstimates-1)*benchmarkSettings.numberOfExperimentsPerInitialPoint+benchmarkSettings.numberOfExperimentsPerInitialPoint))));
end
if optionsML.verbose == true
fprintf('ML status: initial estimate %d, experiment %d \n', initEst, expNb );
fprintf('ML status: initial parameter error = %d\n', norm(Beta_0-benchmarkSettings.Beta_obj));
fprintf('ML status: estimated parameter error = %d\n', norm(Beta_ML-benchmarkSettings.Beta_obj));
disp('---------------------------------------------')
end
results_ML.Betas(initEst,expNb,:)=Beta_ML;
end
end
end